The second law efficiency and the exergy destruction during the expansion process.
Answer to Problem 97RP
The second law efficiency is
The exergy destruction during the expansion process is
Explanation of Solution
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the mole number of
Here, molar mass of
Write the expression to obtain the mass fraction of
Write the expression to obtain the mass fraction of
Write the expression to obtain the mass fraction of
Write the expression to obtain the equation to calculate the mole number of the mixture
Write the expression to obtain the molar mass of the gas mixture
Write the expression to obtain the equation to calculate the constant-pressure specific heat of the mixture
Here, constant pressure specific heat of
Write the expression to obtain the gas constant of the mixture
Here, the universal gas constant is
Write the expression to obtain the constant volume specific heat
Write the expression to obtain the specific heat ratio
Write the expression to obtain the temperature at the end of the expansion for the isentropic process
Write the expression to obtain the actual outlet temperature
Here, efficiency of the turbine is
Write the expression to obtain the entropy change of the gas mixture
Write the expression to obtain the actual work output
Write the expression to obtain the reversible work output
Write the expression to obtain the second law efficiency
Write the expression to obtain the exergy destruction
Conclusion:
Refer Table A-1, “Molar mass, gas constant, and critical point properties”, obtain the molar masses of
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Refer Table A-2a, “Ideal gas specific heats of various common gases”, obtain the constant pressure specific heats of
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the second law efficiency is
Substitute
Thus, the exergy destruction during the expansion process is
Want to see more full solutions like this?
Chapter 13 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- 1. Air (ideal gas) enters an adiabatic nozzle steadily at 300 kPa, 500°C, and 50 m/s and leave at 80 kPa and 350 °C. Accounting for the change in kinetic energy of the air, determine the change in specific flow exergy, in kJ/kg, of air in this process. (Use: TO = 20°C)arrow_forwardA frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the water in kJ/K.arrow_forwardAn adiabatic steam turbine has an isentropic efficiency of 0.86936. The steam enters the turbine at 10 MPa and 500 C. The steam exits the turbine at a pressure of 30 kPa. The mass flow rate of the steam is 3 kg/s. The enthalpy at the isentropic exit state is hes = 2224.823 kJ/kg. In the question that follows, sselect the answer that is closest to the true value. What is the actual power output of the turbine in units of kW? 3000 3400 2500 2000arrow_forward
- Air is compressed by an adiabatic compressor from 95 kPa and 27°C to 600 kPa and 277°C. Assume variable specific heats and neglect the changes in kinetic and potential energies. Determine the isentropic efficiency of the compressor. Use the table containing the ideal-gas properties of air. The isentropic efficiency of the compressor is _______%.arrow_forwardA well-insulated rigid tank contains 3 lbm of a saturated liquid–vapor mixture of water at 35 psia. Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is turned on and kept on until all the liquid in the tank is vaporized. Assume the surroundings to be at 75°F and 14.7 psia. Determine the exergy destruction. Use steam tables. (You must provide an answer before moving on to the next part.) The exergy destruction is _____Btuarrow_forwardDetermine the non-flow exergy of 2.5-kg of steam at 800 kPa and 300 °C, assuming TO = 20°C and PO = 100 kPa. %3Darrow_forward
- Ambient air at 100 kPa and 300 K is compressed isentropically in a steady-flow device to 0.8 MPa. Determine the exergy of compressed air after it is cooled to 300 K at 0.8 MPa pressure.arrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Steam enters an adiabatic turbine steadily at 7 MPa, 500°C, and 45 m/s and leaves at 100 kPa and 75 m/s. The power output of the turbine is 5 MW and the isentropic efficiency is 77 percent. Use data from the tables. Steam, 7 MPa 500°C, 45 m/s Turbine ولا 100 kPa 75 m/s Determine the mass flow rate of steam through the turbine. (You must provide an answer before moving on to the next part.) The mass flow rate of steam through the turbine is kg/s.arrow_forwardA frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the surrounding air in kJ/K.arrow_forward
- Combustion gases enter a gas turbine at 627°C and 1.2 MPa at a rate of 2.5 kg/s and leave at 527°C and 500 kPa. It is estimated that heat is lost from the turbine at a rate of 20 kW. Using air properties for the combustion gases and assuming the surroundings to be at 25°C and 100 kPa, determine the exergy destroyed within the turbine.arrow_forward2. In a power station, saturated steam is generated at 252°C by transferring heat from the hot gases gener- ated in the combustion chamber. The gases are cooled from 1100°C to 550°C during transferring the heat for steam generation. Determine the increase in total entropy of the combined system of gas and steam and increase in unavailable energy on the basis of one kg of steam generated. Assume water enters the boiler at saturated condition and leaves as saturated steam. [Ans. 1.99 kJ/K ; 597 kJ/kg of steam formed]arrow_forwardAn inventor claims to have created a machine that isothermally compresses 1 lbmol/hr of anideal gas at 1000 oR releasing 3000 Btu which is transferred to another 1 lbmol/hr of idealgas that expands isothermally from 2.72 atm to 1 atm. Is such a device possible or does thisprocess violate the second law? Assume the process is reversible. R = 1.987 Btu/lbmol oR.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY