CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 74P
To determine
What is an ideal solution?. Explain the reasons in changing the properties like volume, enthalpy, entropy, and potential during the formation of ideal and non-ideal solutions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gaseous hydrogen weakens the mechanical strength of cast iron. this phenomenon often occurs in cast iron pressure vessels containing 100% gas hydrogen. H2 gas dissolves in metallic iron and diffuses into solid non-porous iron by an interstitial diffusion mechanism. H2 gas does not need to penetrate far into the iron to have a negative effect on the mechanical strength of iron. In the present situation, 100% of H2 gas at 1.0 atm and 100°C is contained within a 1.0 m internal diameter and wall thickness of 2.0 cm. The solubility of hydrogen in iron in 100°C is 2.2x10-7 mol of H/g Fe atoms. The diffusion coefficient of atoms of hydrogen in solid iron is 124.0x10-9 cm2 /sec at 100°C. Initially, there are no H atoms in solid iron. How many hours will it take for the hydrogen level inside the iron metal reaches 1.76x10-7 mol H atoms/g Fe at a depth of 0.1 cm from the surface exposed to hydrogen gas?
A cylinder contains a mixture of air and wet steam at a pressure of 130kN/m2 and a temperature of 760 C. The dryness fraction of the steam is 0.92. The air – steam mixture is then compressed to one-fifth of its original volume the final temperature being 1250 C. Determine:
a) The final pressure in the cylinder
b) The final dryness fraction of the steam.
Note: I need both right solutions.
The volumetric analysis of a mixture of gases is 25 percent oxygen, 35 percent nitrogen, 5 percent carbon dioxide, and 35 percent
methane. Calculate the apparent specific heats and molecular weight of this mixture of gases. The universal gas constant is Ru= 8.314
kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas
specific heats of various common gases.
The apparent molecular weight of this mixture of gases is
The constant-pressure specific heat of the mixture is
The constant-volume specific heat of the mixture is
kg/kmol.
kJ/kg-K.
kJ/kg-K.
Chapter 13 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam of gas at 70 degrees F, 14.3 psia and 50% saturated water vapor is passes through a drying tower where 90% of the water vapor is removed. Calculate the pounds of water removed per 1000 ft3 of entering gas. The vapor pressure of water at 70 degrees F is 0.74 in Hg.arrow_forwardA 1.40 kg sample of water at 15.0°C is in a calorimeter. You drop a piece of steel with a mass of 0.330 kg at 230°C into it. After the sizzling subsides, what is the final equilibrium temperature (in °C)? (Make the reasonable assumptions that any steam produced condenses into liquid water during the process of equilibration and that the evaporation and condensation don't affect the outcome.) °Carrow_forwardUsing the Clapeyron equation, determine the latent heat of vaporization of saturated Propane. Data: Temperature: 40°F; Pressure: 77.80 psia; Liquid volume: 0.03055 ft3/lbm; Vapor volume: 1.33 ft3/lbm.arrow_forward
- How do we solve this one ?arrow_forwardOne mole of an ideal gas initially at a temperature of Ti = 4.2°C undergoes an expansion at a constant pressure of 1.00 atm to five times its original volume. (a) Calculate the new temperature Tf of the gas.? K(b) Calculate the work done on the gas during the expansion. ?kJarrow_forwardTen pounds of water at 35oF, and 6.00 lb of steam at 250oF and 20 psia are mixed together in a container of fixed volume. What is the final temperature of the mixture? How much steam condense? Assume that the volume of the vessel is constant with a value equal to the volume of the steam and that the vessel is insulated.arrow_forward
- Hi, please provide the need solution for this problem. The final answer is already provided below. Thank you so much. *** Determine the result when 100g of steam at 100C is passed into 200g of water and 20g of ice at exactly 0C in a calorimeter which behaves thermally as if it were equivalent to 30g of water. Answer: 49 grams of steam condense, final temperature 100°Carrow_forward(8) A rigid tank contains oxygen at 1.1 MPa and 210°C. The oxygen is heated to reach a temperature of 520°C. The final pressure is: (a) 1.489 MPa (b) 1.644 MPa (c) 1.806 MPa (d) 2.015 MPa (e) 2.293 MPaarrow_forwarduestion 4: (a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa and 18°C. The propane is used to fuel a gas burner. After some time, the pressure and temperature are 210 kPa and 23°C respectively. Determine the mass of propane used. The molar mass of propane is 44 g/mole. (b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of 1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C. Determine the amount of heat and work involved in this process and state whether the heat and work are into, or out of the gas.arrow_forward
- 5. Answer the questions about the conditions of the given phase change material. (1) In refrigerant R134a, calculate the temperature and enthalpy h (kJ/kg) at a pressure of 1 MPa and a specific volume of 0.01474 m^ 3 /kg. (2) In refrigerant R134a, calculate the pressure and enthalpy (kJ/kg) at -20℃ and a specific volume of 0.1 m^ 3 /kg. (3) In a 0.1m^3 volume container, there is water with a pressure of 1 MPa and a temperature of 250℃. Find the mass of water (kg). (4) At a pressure of 0.4 MPa, 2 kg of water is contained in a 0.4 m^3 container. Find the temperature in the container and the internal negative energy (kj/kg). (5) A container with a volume of 3 m^3 contains 5 kg of water with a pressure of 200 kPa. Find the temperature and internal energy (kJ/kg). (6) 41.3g of water is contained in an 80ℓ container. When the temperature is 150 °C, find the pressure (MPa). Note: The meaning of'water' above can be either liquid, water vapor, or a mixture of liquid and water vapor.>…arrow_forwarda newly purchassed container that has a capacity of 1 cubic meter contains a mixture of liquid and steam in equilibrium at 601 K. the mass of the liquid is found to be 15 kg. determine the quality of the mixture at %.arrow_forward0.05 kg of steam at 15 bar is contained in a rigid vessel of volume 0.0076 m 3 , what is the temperature of steam? If the vessel is cooled, at what temperature will the steam be just dry and saturated? The cooling is continued until the pressure in the vessel is 11.0 bar. Calculate the final dryness fraction of steam and heat rejected between initial and final states.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY