PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 91P
Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, where θ is in radians. If the angular position of the arm is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A homogeneous 150-kg vertical bar AB is raised from rest at θ = 0° by means of the parallel swinging bars of negligible weight, with a constant moment M = 5 kN-m applied to the lower link at C. Determine the angular velocity and the angular acceleration of the links and the forces at A and B at the instantθ = X°. Take the angle θ = 37°.
P= 900 N
4) The uniform 40 kg slender rod is being pulled
by a cable that passes over the small smooth peg
at A, and a vertical force F is applied at the edge
0.8 m
as shown. If the rod has an angular velocity of
w=6 rad/s
6 rad/s at the instant, determine the tangential
and normal components of reaction forces at the
F=150 N
pin 0, and the angular acceleration of the rod.
tosmt
0.6 m
0.3 m
The constant tensions of 200N and 160 N are ap-
Q2
plied to the hoisting cable as shown. If the velocity
v of the load is 2 m/s down and the angular velocity
w of the pulley is 8 rad/s counterclockwise at time
t = 0, determine v and w after the cable tensions
have been applied for 5 s. Note the independence of
the results.
200 N
160 N
300 mm
15 kg
k = 250 mm
20 kg
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In the figure, rod AB has a mass of 10 kg, and must slide within the slots as shown. If the spring is unstretched when θ = 0°, determine the angular velocity of the bar when it reaches that angle after being released from θ = 30°.arrow_forwardThe 0.2-Kg pin P is constrained to move in the smooth curved slot. Which is defined by the lemniscate r = (0.6 cos20) m. Its motion is controlled by the rotation of the slotted arm OA, which has a constant clockwise angular velocity of 0 = -3 rad/s. Determine (a)-the force arm OA exerts on the pin P when 8 = 0°,note that the motion is in the vertical plane, (b) the acceleration in the r and0 direction. 1= (0.6 cos 26) m Aarrow_forwardPart A The smooth surface of the vertical cam is defined in part by the curve r = (0.2 cos 0+0.3) m. The forked rod is rotating with an angular acceleration of 0 = 2 rad/s as shown in (Figure 1), and when 0 = 45°, the angular velocity is 6 = 6 rad/s. Determine the force the cam and the rod exert on the 1.8-kg roller at this instant. The attached spring has a stiffnesss k = 100 N/m and an unstretched length of 0.1 m. Express your answers in newtons using three significant figures separated by a comma. ? Neam, Frud = N Submit Request Answer Figure 1 of 1 Provide Feedback Next >arrow_forward
- The 0.2-Kg pin P is constrained to move in the smooth curved slot. Which is defined by the lemniscate r = (0.6 cos20) m. Its motion is controlled by the rotation of the slotted arm OA, which has a constant clockwise angular velocity of è = -3 rad/s. Determine (a)-the force arm OA exerts on the pin P when 0 = 0°,note that the motion is in the vertical plane, (b) the acceleration in the r and 0 direction. r= (0.6 cos 26) m A اضف ملف ك مستقل عن المسار W العمل الذي قام به شنيع مما بالأعلى لا شيء O jsi آخرarrow_forwardAt the instant shown, the spring is undeformed. Determine the change in potential energy if the 20 kg disk (kG = 0.5 m) rolls 2 revolutions without slipping. ½(200)(1.2 π )2 + (20) (9.81) (1.2 π sin 30°) - ½(200)(1.2 π )2 - (20) (9.81) (1.2 π sin 30°) ½(200)(1.2 π )2 - (20) (9.81) (1.2 π sin 30°) ½(200)(1.2 π )2arrow_forwardWhen the angle θ = 90 °, the cylinder BE starts with a vertical force (F = 3210 N) Newtons on the platform. Also, the box (box) is 200 kg and the angular velocity (ω) of body AB is 9 (rad / s). First, treat the box and platform as a single body to find the following: The magnitude of the reaction forces at points B and D. Box aG acceleration in the x and y direction. Second, having progressed earlier, only found the following for the platform: Reaction force from the box on the platform. Minimum symbol minimum A request of the consonant (μs) to disallow the box.arrow_forward
- Rod OA rotates counterclockwise at a constant angular rate 0 = 4 rad/s. The double collar Bis pin-connected together such that Determine the magnitude of the force which the circular rod exerts on one of the collars at the instant 0 = 45°. one collar slides over the rotating rod and the other collar slides over the circular rod described by the equation r = (1.6 cos 0) m Both collars have a mass of 0.65 kg. Motion is in the vertical plane. (Figure 1) Express your answer to three significant figures and include the appropriate units. HA ? F = - 11.766 Figure 1 of 1 Submit Previous Answers Request Answer X Incorrect; Try Again; 3 attempts remaining r = 1.6 cos 0 0 = 4 rad/s B Part B Determine the magnitude of the force that OA exerts on the other collar at the instant 0 = 45°. Express your answer to three significant figures and include the appropriate units. 0.8 m HẢ ? FOA = 11.766arrow_forwardThe 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N•m and is released from rest from the position as shown, determine its angular velocity w (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s2. `L MV Your Answer: Answerarrow_forward0₁ Oy || 5 Kronk is asked to pull the lever. He applies a force of 20 N, causing the 8 kg lever to have an angular rad velocity of 3 || 6 8 . Determine the angular acceleration of the lever and the reaction forces at O. Assume the lever is a slender rod and that the lever was originally propped up to be level horizontally. The prop was removed at the instant Kronk applied the force. α = 5 Kronk applies the force at a length 7 and the lever has length 1 = 0.2 m. Use negative if CW 1 N N 1 rad 8² F (0) -CCWarrow_forward
- The small block B is attached to the vertex A of the right circular cone using a light cord. The cone is rotating at a constant angular velocity about the vertical z-axis such that the block attains a speed of 0.6 m/sec. If the mass of the block is 0.3 kg, determine the tension in the cord by neglecting friction and the size of the block. Present your answer in Newtons using 3 significant figures. 200 mm B 300 mm A 400 mmarrow_forwardQ1: The rope is wrapped around the central core of the 95 kg coil, whose rotating radius relative to its axis is 0.35 m. If block B of 3.0 kg is released from the rest, determine the angular speed of the coil when t = 2 seconds. Despise the mass of the rope. 1,1 m 0,5 m Barrow_forwardThe 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N·m and is released from rest from the position as shown, determine its angular velocity W (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². L Your Answer: Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY