PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 8FP
Determine the maximum speed that the jeep can travel over the crest of the hill and not lose contact with the road.
Prob. F13-8
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
14-35. When the 150-lb skier is at point A he has a speed
of 5 ft/s. Determine his speed when he reaches point B on
the smooth slope. For this distance the slope follows the
cosine curve shown. Also, what is the normal force on his
skis at B and his rate of increase in speed? Neglect friction
and air resistance.
y = 50 cos
(-
x)
100
35 ft
F13-5. The spring has a stiffness k = 200 N/m and is
unstretched when the 25-kg block is at A. Determine the
acceleration of the block whens = 0.4 m. The contact
surface between the block and the plane is smooth.
F = 100 N
100 N
k = 200 N/m
0.3 m
When s= 0.6 m, the spring is
unstretched and the 10kg block has a
speed of 5 m/s down the smooth
plane. Determine the distances when
the block stops. *
* = 200 N m
Sm
F-100 N
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- *14-28. Roller coasters are designed so that riders will not experience a normal force that is more than 3.5 times their weight against the seat of the car. Determine the smallest radius of curvature p of the track at its lowest point if the car has a speed of 5 ft/s at the crest of the drop. Neglect friction. ☆ 10 ft 120 ftarrow_forwardThe 0.8-Mg car travels over the hill having the shape of a parabola. If the driver maintains a constant speed of 9 m/s, determine both the resultant normal force and the resultant frictional force that all the wheels of the car exert on the road at the instant it reaches point A. Neglect the size of the car.arrow_forwardDuring a brake test, the rear-engine car is stopped from an initial speed of 80 km/h in a distance of 68 m. If it is known that all four wheels contribute equally to the braking force, determine the braking force Fat each wheel. Assume a constant deceleration for the 1290-kg car. -68 m V1 = 80 km/h l'g = 0 Answer: F = i Narrow_forward
- F13-9. A pilot weighs 150 lb and is traveling at a constant speed of 120 ft/s. Determine the normal force he exerts on the seat of the plane when he is upside down at A. The loop has a radius of curvature of 400 ft. |A 400 ftarrow_forwardA 0.8 Mg car travels over the hill having the shape of a parabola. If the driver maintains a constant speed of 9 m/s, determine both the resultant normal force and the resultant frictional force that all the wheels of the car exert on the road at the instant it reaches A. y = 20 (1 – À00 -80 m-arrow_forwardThe collar has a mass of 20 kg and is supported on the smooth rod. The attached springs are undeformed when d=0.5m. Determine the speed of the collar after the applied force F=100N causes it to be displaced so that d=0.3m. When d=0.5m the collar is at rest.arrow_forward
- F15-23. The 2-kg sphere is attached to the light rigid rod, which rotates in the horizontal plane centered at 0. If the system is subjected to a couple moment M = (0.9f) N - m, where t is in seconds, determine the speed of the sphere at the instant t = 5 s starting from rest. 0.6 m M = (0.9F) N-marrow_forwardThe 4-lb collar C fits closely the smooth shaft. The spring in unstretched when s=0 and its stiffness is 6 lb/ft. AT s=0 ft, the collar is given a velocity of 19ft.s-1. The height is 0.6-ft. determine the position of the collar when its velocity is 0 ft.s-1arrow_forward15-90. Before a cranberry can make it to your dinner plate, it must pass a bouncing test which rates its quality. If cranberries having an e z 0.8 are to be accepted, determine the dimensions d and h for the barrier so that when a cranberry falls from rest at A it strikes the incline at B and bounces over the barrier at C. i 3.5 ftarrow_forward
- If the track is designed so that the passengers of the roller coaster do not experience a normal force less than 1/2 or more than 3 times their weight, determine the limiting heights hA and hC so that this does not occur. The roller coaster starts from rest at position A. Neglect friction. Please show every single step of the processarrow_forward14-92 The roller coaster car has a speed of 15 ft/s when it is at the crest of a vertical parabolic track. Determine the car's velocity and the normal force it exerts on the track when it reaches point B. Neglect friction and the mass of the wheels. The total weight of the car and the passengers is 350 lb. 200 ft VA 15 ft/s = AK AK y = 200 (40 000 - x 3 -200 ft B Xarrow_forwardy - y = 4.5 – x h ft k lb/ft B I ft The 8-lb collar has a speed of 9 ft. s at A. The attached spring has an unstretched length of 2 ft and a stiffness of k = 15lb. ft-1. If the collar moves over the smooth rod, determine its speed when it reaches point B. The height of A is h = 6 ft and B is at l = 4ft from the vertical of A wwwarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License