PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 72P
The 150-lb man lies against the cushion for which the coefficient of static friction is μs = 0.5. If he rotates about the z axis with a constant speed v = 30 ft/s, determine the smallest angle θ of the cushion at which he will begin to slip off.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. The 150-1b man lies against the cushion for which the
coefficient of static friction is µ̟ = 0.5. If he rotates about the
z axis with a constant speed of v =
smallest angle 0 of the cushion at which he will begin to slip
off.
30 ft/s, determine the
-8 ft
Figure: 13 PO63-064
2. The car, having a mass of 1000 kg, is traveling horizontally along a 20° banked track which is
circular and has a radius of curvature of p = 100 m. If the coefficient of static friction between
the tires and the road is us = 0.3, determine the minimum and maximum constant speed at
which the car can travel without sliding down and up the slope. Neglect the size of the car.
e= 20°
Determine the steady-state angle α if the constant force P = 180 N is applied to the cart of mass M = 9 kg. The cart travels on the slope of angle θ = 16°. The pendulum bob has mass m = 3 kg and the rigid bar of length L = 1.2 m has negligible mass. Ignore all friction.
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The Block shown has a velocity v1 = 25 m/s at A and a velocity v2 = of 15 m/s as it passes point B on the incline. Calculate the coefficient of friction between the block and the plane if s= 100m and θ = 25 degreearrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, θθ = 34°, θ˙θ˙ = 43 deg/s, and θ¨θ¨ = 10 deg/s2. Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.88 m. The motion occurs in a vertical plane.arrow_forwardDetermine the steady-state angle a if the constant force P = 195 N is applied to the cart of mass M = 16 kg. The cart travels on the slope of angle 0 = 25° The pendulum bob has mass m = 4 kg and the rigid bar of length L = 1.1 m has negligible mass. Ignore all friction. P M L marrow_forward
- The slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 37,0 = 44 deg/s, and 0 = 23 deg/s². Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.5-kg slider B. Neglect all friction, and let L = 0.84 m. The motion occurs in a vertical plane. Answers: F= N= i i -L m N B N 79⁰arrow_forward2. The flatbed railway car travels at the constant speed of 60 km/h around a curve of radius 55 m and bank angle 15°. Determine the smallest static coefficient of friction between the crate and the car that would prevent the crate of mass M from sliding. R = 55 m 15°arrow_forwardThe automobile has a weight of 3300 lb and is traveling forward at 4 ft/s when it crashes into the wall. The impact occurs in 0.06 s. The figure shows a car crashing into a wall. If the coefficient of kinetic friction between the wheels and the pavement is μk = 0.3, calculate the impulsive force on the wall if the brakes were applied during the crash. The brakes are applied to all four wheels so that all the wheels sliparrow_forward
- r The bottle shown rests at a distance of 3 feet from the centre of the horizontal platform. If the coefficient of static friction between the bottle and the platform is us speed the bottle can attain before it flies off. Assume the disc increases in speed gradually until the bottle starts to move relative to the disc. 0.2, determine the maximum tangential ft V = Sarrow_forwardThe spring-mounted 0.82-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate À = 9.1 rad/s. At a certain instant, r is increasing at the rate of 850 mm/s. If the coefficient of kinetic friction between the collar and the rod is 0.56, calculate the friction force F exerted by the rod on the collar at this instant. Vertical 0 Answer: F= i Attempts: 0 of 3 used Submit Answer eTextbook and Media Save for Later Narrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 34°, 0 = 43 deg/s, and 0 = 28 deg/s². Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.6-kg slider B. Neglect all friction, and let L = 0.75 m. The motion occurs in a vertical plane. Part 1 -L B Answer: ay = i m Slider B moves only vertically (the y-direction). Find the acceleration (positive if up, negative if down). B m y m/s²arrow_forward
- 1. If the 50-kg crate starts from rest and achieves a velocity of v = 4 m/s when it travels a distance of 5 m to the right, determine the magnitude of the force P acting on the crate. The coefficient of static friction between the crate and the ground is u. = 0.3 30arrow_forward4. The pipe has a mass of 600 kg and is being towed behind a truck. If the angle 0 = 30°, determine the acceleration of the truck and the tension in the cable. The coefficient of kinetic friction between the pipe and the ground is Hk = 0.1. B 45° Ge 0.4 marrow_forwardThe 0.6-lb particle is guided along the circular path using the slotted arm guide. Motion occurs in the horizontal plane with negligible friction. Note that the circular part of the slot has the radius equal to 0.5 ft, and the radial position, r, is measured from the hinge and the angle is measured in the counter-clockwise direction. If the arm has an angular velocity = 4 rad/sec and an angular acceleration 6 - 8 rad/sec² at the instant when 0 = 30°, determine the force of the arm guide on the particle at the instant. Present your answer in lb using 3 significant figures. 0.5 ft 0 0.5 ft.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License