PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 109P
To determine
The normal force which the circular rod exerts on one of the collars and the force that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The equatorial radius of the earth is 2.0925(10^7 ) ft, and the polar radius is 2.0856(10^7) ft. Determine the gravitational acceleration g at the two locations.
8
Two flywheels are pinned to opposite ends of a metal bar. The smaller flywheel has a mass of 40 kg
and a radius of 0.25 m. The larger flywheel has a mass of 275 kg and a radius of 1.75 m. The bar
has a mass of 2 kg and a length of 3 m.
A wooden plate acts as a ripcord by temporarily pressing it against the flywheels and rapidly
translating it to the left at v =
angular velocity of 25 rad/s and the large flywheel has an angular velocity of 3.5714285714286
rad/s. The flywheel-bar assembly is then set on frictionless ice such that the axes of rotation are
perpendicular to the ice surface.
6.25 m/s. The plate is removed when the small flywheel has an
The flywheel pins have Hk = 0.05, which eventually causes the flywheels to stop spinning relative
to the metal bar. Angular momentum is conserved, so the whole assembly continues spinning as a
rigid body about the center of mass. What is the final angular velocity of the assembly?
rad/s.
The flywheels and bar rotate about their combined center…
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2/135 As the hydraulic cylinder rotates around O, the ex- posed length 1 of the piston rod P is controlled by the action of oil pressure in the cylinder. If the cyl- inder rotates at the constant rate 0 = 60 deg/s and 1 is decreasing at the constant rate of 150 mm/s, calculate the magnitudes of the velocity v and ac- celeration a of end B when 1 = 125 mm. Ans. U = 545 mm/s, a = 632 mm/s² 375 mm 0 Problem 2/135 Barrow_forwardPart A The smooth surface of the vertical cam is defined in part by the curve r = (0.2 cos 0+0.3) m. The forked rod is rotating with an angular acceleration of 0 = 2 rad/s as shown in (Figure 1), and when 0 = 45°, the angular velocity is 6 = 6 rad/s. Determine the force the cam and the rod exert on the 1.8-kg roller at this instant. The attached spring has a stiffnesss k = 100 N/m and an unstretched length of 0.1 m. Express your answers in newtons using three significant figures separated by a comma. ? Neam, Frud = N Submit Request Answer Figure 1 of 1 Provide Feedback Next >arrow_forwardAs in the figure, in an amusement vehicle rotating in the amusement park, the center shaft rotates at a speed of n=9 rpm. Meanwhile, the child is moved with the position equations r = (2 sinθ + 5) m and z = (3 cosθ) m. Find the forces generated in the child in all three axes (r, θ, z). The weight of the child is m = 31 kg. θ=115 degrees at the time the photo was taken.arrow_forward
- The 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N·m and is released from rest from the position as shown, determine its angular velocity W (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². L Your Answer: Answerarrow_forwardThe 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N•m and is released from rest from the position as shown, determine its angular velocity w (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s2. `L MV Your Answer: Answerarrow_forwardThe uniform 50-kg sphere has radius r = 0.2 m and is welded to the center of the uniform 30-kg shaft as shown. When a constant couple moment M is applied to the shaft, its angular velocity reaches 74 rad/s after 4 s. Determine the magnitude of the moment M. Write your answer in N.m but do not write the units. M R= 0.1 m Taylor e m Te am Answer: Answerarrow_forward
- The 23-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.3 m. If it is subjected to the constant moment M = 82 N·m and is released from rest from the position as shown, determine its angular velocity W (in rad/s) when it has rotated 45 Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answerarrow_forwardRod OA rotates counterclockwise with a constant angular velocity of 0 = 5 rad/s. The double collar Bis pin-connected together such that one collar slides over the rotating rod and the other slides over the horizontal curved rod, of which the shape is described by the equation r = 1.5(2– cos 0) ft. 6 = 5 rad/s r = 1.5 (2 – cos 6) ft Part A If both collars weigh 0.60 lb , determine the magnitude of the normal force which the curved rod exerts on one collar at the instant 0 = 130 °. Neglect friction. Express your answer to three significant figures and include the appropriate units. N =arrow_forwardThe constant tensions of 200N and 160 N are ap- Q2 plied to the hoisting cable as shown. If the velocity v of the load is 2 m/s down and the angular velocity w of the pulley is 8 rad/s counterclockwise at time t = 0, determine v and w after the cable tensions have been applied for 5 s. Note the independence of the results. 200 N 160 N 300 mm 15 kg k = 250 mm 20 kgarrow_forward
- Parvinbhaiarrow_forwardThe homogeneous, solid cylinder with mass m = 4.8 kg and radius r = 0.24 m rolls along the inclined surface without slipping. If the initial angular velocity is w, = 2 rad/s (counterclockwise), and after a certain time lapse the angular velocity is w2 = 2.2 rad/s (clockwise), determine the magnitude of the linear impulse due to the frictional force during this time period. Let 0 = 46°.arrow_forwardA drum with a radius of 0.5 ft has a weight of 90 lb and a radius of gyration ko = 0.3 ft. A weightless cable is wrapped around the drum and rotates it clockwise. If the cable is being pulled by a force P = 15 lb, determine the time needed to increase the drum's angular velocity from w1 = 6 rad/s to wz = 24 rad/s. 0.5 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY