PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 55P
Determine the maximum constant speed at which the pilot can travel around the vertical curve having a radius of curvature ρ =800 m, so that he experiences a maximum acceleration an = 8g = 78.5 m/s2. If he has a mass of 70 kg, determine the normal force he exerts on the seat of the airplane when the plane is traveling at this speed and is at its lowest point.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The spring is not stretched or compressed when “s=0.8m" and the 11
kg block which is subjected to a force of 105 N has a speed of 5.5 m/s
down the smooth plane.
Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s"
when the block STOPS.
k = 200 N/m
5 m/s
F = 100 N
30°
The box with a weight of 6 lb slides down the
smooth surface that has a circular portion AB. If
the speed of the box is 8 ft/sec at A, calculate the
magnitude of the normal force acting on the box
at C. Present your answer in lb using 3
significant figures. The following relations may
be useful:
sin(A + B)=sin A
c
·cos B±cos A-sin B
cos(A + B) = cos A cos B sin A-sin B
45°
B
0=30°
20 ft
8 ft/s
A
45°
When the 10 lbm box reaches point F it has a speed vF=3o ft/s. Determine the normal force the box exerts on the surface when it reaches point M. Neglect friction and the size of the box
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The roller coaster and its passenger have a total mass m. Determine the smallest velocity it must have when it enters the loop at A so that it can complete the loop and not leave the track. Also, determine the normal force the tracks exert on the car when it comes around to the bottom at C. The radius of curvature of the tracks at B is p3 , and at C it is Pc. Neglect the size of the car. Points A and C are at the same elevation. B PBarrow_forwardThe 150-lb car of an amusement partk ride is connected to a rotating telescopic boom. When r = 15 ft, the car is moving on a horizontal circular path with a speed of 30 ft/s. If the boom is shortened at a rate of 3 ft/s, determine the speed of the car when r = 10 ft. Also, find the work done by the axial for F along the boom. Neglect the size of the car and the mass of the boom.arrow_forwardThe 180-g slider has a speed v= 1.4 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B. Answers: (a) R₂ = (b) RB = i i -200 mm B N Narrow_forward
- The slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 26°, Ò = 50 deg/s, and Ö – 14 deg/s². Determine the magnited of the force Fapplied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.74 m. The motion occurs in a vertical plane. B т -Larrow_forwardThe sports car, having a mass of 1700 kg, travels horizontally along a 20° banked track which is circular and has a radius of curvature of p = 100 m. Determine the normal force of the car in Newton.arrow_forwardThe jet-powered aircraft has a mass of 25 tons and a center of mass at G. If a tow cable is attached to the top of the nose wheel and exerts a force of T = 348 N as shown, determine The acceleration of the plane, in m/s2. Neglect the lift of the wings and the mass of the wheels. 30° T 0.4 m JA + 0.8 m -6 m B& 3 marrow_forward
- Task 2 The package has a weight of 30 N and slides down the chute. When it reaches the curved portion AB, it is traveling at 2.4 m / s. If the chute is smooth, determine the speed of the package when it reaches the intermediate point C when 0 = 12° and when it reaches the horizontal plane. Also, find the normal force on the package at C. radius = 6 m 450 eMechanica.com -2.4 m/sarrow_forwardA pilot weighs 150 lb and is traveling at a constant speed of 120 ft/s. Determine the normal force he exerts on the seat of the plane when he is upside down at A. The loop has a radius of curvature of 400 ft. IA 400 ftarrow_forwardIf the motor draws in the cable with an acceleration of 3 m/s^2, determine the reactions at the supports A and B. The beam has a uniform mass of 30 kg/m, and the crate has a mass of 200 kg. Neglect the mass of the motor and pulleys.arrow_forward
- The 4-lb collar is compressed against a spring a distance of 6 inches and then releasedfrom rest. The spring can be considered elastic and has a constant of k = 10 lb/in. Thespring is not adhered to the collar, and can be considered massless, so it will notextend into tension. Plot the acceleration of the collar as a function of x for x = 0 to 7 inches.What is the velocity as the collar leaves the spring?arrow_forwardThe 0.8-Mg car travels over the hill having the shape of a parabola. If the driver maintains a constant speed of 9 m/s, determine both the resultant normal force and the resultant frictional force that all the wheels of the car exert on the road at the instant it reaches point A. Neglect the size of the car.arrow_forwardM = A frisbee is thrown such that its final angular velocity is w = 9 after being in flight for t = 2 s. As it rad S flies, the wind applies a constant moment, causing the frisbee to rotate faster. If the frisbee was initially at rest, determine the moment of the wind and the work done by said moment. Assume the frisbee can be modelled as a disk with mass m = = 0.15 kg and that it rotates about its center of gravity G. The frisbee has a radius of r = 0.12 m. UM = N.m r J G Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY