PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 6RP
The bottle rests at a distance of 3ft from the center of the horizontal platform. If the coefficient of static friction between the bottle and the platform is μs = 0.3, determine the maximum speed that the bottle can attain before slipping. Assume the angular motion of the platform is slowly increasing.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
r
The bottle shown rests at a distance of 3 feet from the centre of the horizontal platform. If the coefficient
of static friction between the bottle and the platform is us
speed the bottle can attain before it flies off. Assume the disc increases in speed gradually until the bottle
starts to move relative to the disc.
0.2, determine the maximum tangential
ft
V =
S
2. The car, having a mass of 1000 kg, is traveling horizontally along a 20° banked track which is
circular and has a radius of curvature of p = 100 m. If the coefficient of static friction between
the tires and the road is us = 0.3, determine the minimum and maximum constant speed at
which the car can travel without sliding down and up the slope. Neglect the size of the car.
e= 20°
F
15°
0.6 m
1 m
The crate has a mass of 58 kg and rests on the inclined platform of the truck.
Determine the minimum acceleration that will cause the crate to tip over or
slide relative to the forklift. What is the magnitude of this acceleration? The
coefficient of static friction between the packaging and the truck is µs= 0.7.
Chapter 13 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 13 - Prob. 1FPCh. 13 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13 - A spring of stiffness k = 500 N/m is mounted...Ch. 13 - Prob. 4FPCh. 13 - Block B rests upon a smooth surface. If the...Ch. 13 - The 6-lb particle is subjected to the action of...Ch. 13 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13 - Determine the time needed to pull the cord at B...Ch. 13 - Prob. 12PCh. 13 - Block A has a weight of 8 lb and block B has a...
Ch. 13 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13 - The motor lifts the 50-kg crate with an...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - The 50-kg block A is released from rest. Determine...Ch. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 31PCh. 13 - The tractor is used to lift the 150-kg load B with...Ch. 13 - Prob. 35PCh. 13 - Prob. 39PCh. 13 - The 400-lb cylinder at A is hoisted using the...Ch. 13 - Prob. 43PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 51PCh. 13 - The block rests at a distance of 2 m from the...Ch. 13 - Determine the maximum speed that the jeep can...Ch. 13 - A pilot weighs 150 lb and is traveling at a...Ch. 13 - The sports car is traveling along a 30 banked road...Ch. 13 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13 - Prob. 12FPCh. 13 - Prob. 53PCh. 13 - The 2-kg block B and 15-kg cylinder A are...Ch. 13 - Determine the maximum constant speed at which the...Ch. 13 - Cartons having a mass of 5 kg are required to move...Ch. 13 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - At the instant B = 60, the boys center of mass G...Ch. 13 - Prob. 62PCh. 13 - Prob. 66PCh. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - The 150-lb man lies against the cushion for which...Ch. 13 - Prob. 76PCh. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Determine the constant angular velocity of the...Ch. 13 - The 0.2-kg ball is blown through the smooth...Ch. 13 - The 2-Mg car is traveling along the curved road...Ch. 13 - The 0.2-kg pin P is constrained to move in the...Ch. 13 - Determine the magnitude of the resultant force...Ch. 13 - The path of motion of a 5-lb particle in the...Ch. 13 - The boy of mass 40 kg is sliding down the spiral...Ch. 13 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13 - The collar has a mass of 2 kg and travels along...Ch. 13 - The forked rod is used to move the smooth 2-lb...Ch. 13 - Prob. 109PCh. 13 - Prob. 110PCh. 13 - Prob. 113PCh. 13 - A communications satellite is in a circular orbit...Ch. 13 - Prob. 115PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - The rocket is in free flight along an elliptical...Ch. 13 - Prob. 123PCh. 13 - Prob. 124PCh. 13 - Prob. 129PCh. 13 - Prob. 130PCh. 13 - Prob. 131PCh. 13 - The rocket is traveling around the earth in free...Ch. 13 - Prob. 1RPCh. 13 - Prob. 2RPCh. 13 - Block B rests on a smooth surface. If the...Ch. 13 - Prob. 4RPCh. 13 - Prob. 5RPCh. 13 - The bottle rests at a distance of 3ft from the...Ch. 13 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The crate has a mass of 80 kg and is being towed by a chain which is always directed at 20° from the horizontal as shown. If the magnitude of P is increased until the crate begins to slide, determine the crate's initial acceleration if the coefficient of static friction is = 0.5 and the coefficient of kinetic friction is pk = 0.3. 13arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardThe double inclined plane supports two blocks A and B, each having a weight of 7 lb as shown below. If the coefficient of kinetic friction between the blocks and the plane is 0.09, determine the acceleration of each block.arrow_forward
- 1. If the 50-kg crate starts from rest and achieves a velocity of v = 4 m/s when it travels a distance of 5 m to the right, determine the magnitude of the force P acting on the crate. The coefficient of static friction between the crate and the ground is u. = 0.3 30arrow_forwardIf the coefficient of static friction between the 50-lb roller and the ground is p, = 0.25, determine the maximum force P that can be applicd to the handle, so that roller rolls on the ground without slipping. Also, find the angular acceleration of the roller. Assume the roller to be a uniform cylinder. 15 ft 30arrow_forwardThe man pushes on the roller with force P through a handle that connects to the central axle of the roller. If the coefficient of static friction between the 43-lb roller and the floor is Hs = 0.21, and the force Pis maximum so that the roller is about to slip, determine the angular acceleration of the roller (in rad/s?). Assume the roller to be a uniform cylinder. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 32.2 ft/s?. 1.5 ft 30°arrow_forward
- 1. The coefficient of kinetic friction between the 40-kg crate and the slanting floor is μ = 0.3. if the angle a = 20°, what tension must the person exert on the rope to move the crate at constant speed? 10° Tarrow_forwardThe conveyor belt is moving downward at 5 m/s. If the coefficient of static friction between the conveyor and the 15-kg package Bis * mu_{x} = 0.62 , determine the shortest time the belt can stop so that the package does not slide on the beltarrow_forwardTwo bodies A and B, each weighing 96.6 lb, are connected by a rigid bar of negligible weight attached to them at their gravity centers. The coefficient of friction at the wall and floor is 0.268 if the bodies start from rest at the given position, determine the acceleration of B at this instant. Simplify the solution by creating dynamic equilibrium and taking a moment summation about the intersection of the wall and floor reactions. Explain why these reactions pass through the gravity center of B and A respectively.arrow_forward
- Determine the maximum speed, If the friction at the sleeve is equivalent of 24 N of load.The arms of a Porter governor are each 210mm long and pivoted on the governor axis. The mass of each ball is 7 kg and the mass of the central sleeve is 36 kg. The radius of rotation of the balls reaches a value of 168mm for maximum speed and draw the governor maximum position line diagramarrow_forwardBlock A of mass m is placed on the inclined surface of wedge B. The static coefficient of friction between A and B is 0.4. Determine the smallest acceleration a of the wedge that would cause the block to slide up the inclined surface. * A. 4= 0.4 20°arrow_forwardThe 5-lb packages ride on the surface of the conveyor belt as shown in (Figure 1). The coefficient of static friction between the belt and a package is 0.45. Figure 0. 6 in. 6 If the belt starts from rest and its speed increases to 2 ft/s in 2 s, determine the maximum angle so that none of the packages slip on the inclined surface AB of the belt. Express your answer in degrees to three significant figures. 0 = Submit Part B Avec b = Request Answer At what angle do the packages first begin to slip off the surface of the belt after the belt is moving at its constant speed of 2 ft/s? Neglect the size of the packages. Express your answer in degrees to three significant figures. IVE| ΑΣΦ | 41 ? vec ? Oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License