Concept explainers
The following table lists the concentrations of the principal ions in seawater:
- (a) Calculate the freezing point of seawater.
- (b) Calculate the osmotic pressure of seawater at 25 °C. What is the minimum pressure needed to purify seawater by reverse osmosis?
(a)
Interpretation: The freezing point of seawater has to be determined.
Concept introduction:
Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are,
- Decrease in the vapor pressure
- Increase in the boiling point
- Decline in the freezing point
- Osmotic pressure
Freezing point depression: The freezing point of the solution varies with the solute concentration.
The number of moles of any substance can be determined using the equation
Answer to Problem 79GQ
Freezing point of seawater is
Explanation of Solution
Given,
Molal freezing point depression constant of water is
The value
Hence, the concentration given in ppm can be taken as the mass of each of the ions on
The number of moles of any substance can be determined using the equation
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
Number of moles of
So the total moles of principle ions in
Molality of seawater is,
Depression in freezing point is,
Therefore,
Freezing point of seawater is,
Freezing point of seawater is
(b)
Interpretation: The osmotic pressure of seawater at
Concept introduction:
Colligative properties: Properties of solutions which having influence on the concentration of the solute in it. Colligative properties are,
- Decrease in the vapor pressure
- Increase in the boiling point
- Decline in the freezing point
- Osmotic pressure
Osmotic pressure: The pressure created by the column of solution for the system at equilibrium is a measure of the osmotic pressure and is calculated by using the equation,
where,
c is the molar concentration
The number of moles of any substance can be determined using the equation
Answer to Problem 79GQ
The osmotic pressure of seawater at
Explanation of Solution
Given,
The molarity of the solute is
The osmotic pressure of seawater is,
The osmotic pressure of seawater at
To purify the seawater using reverse osmosis method, there should be a minimum pressure of
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry & Chemical Reactivity
Additional Science Textbook Solutions
Biochemistry: Concepts and Connections (2nd Edition)
Physical Science
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Biology (11th Edition)
Organic Chemistry
- Briefly explain the existence of Nb-Nb bond in the alpha-NbI4 compound.arrow_forwardIn the case of isopilianions, briefly state:- why polymeric species with a defined MW are formed.- why the extent of polymerization is different depending on the metal.- why these polyhedra with such special structures are formed.arrow_forwardA carboxylic acid reacts with water to form a carboxylate ion and H,O+. Complete the reaction. reaction: (CH),CHCH2COOH + H2O (CH), CHCH, COO¯ + H₂O+ Write the IUPAC name of the carboxylate ion formed in the reaction. IUPAC name: BIU X2 SPECIAL GREEK ALPHABET ~ Iarrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardA solution contains 10-3 M (NH4)2CO3 plus 10-3 M CaCO3. (NH4+: pKa 9.26) a) Follow the four steps and list the species and equations that would have to be solved to determine the equilibrium solution composition. (15 pts) b) Prepare a log C-pH diagram for the solution. Use a full sheet of graph paper, and show the ranges 1≤ pH < 13 and -10≤ log C≤ -1. (10 pts) c) Use the graphical approach for the solution pH. What is the concentration of all species? (15 pts)arrow_forwardKeggin structure.arrow_forward
- Given: N2(g) + 3H2(g)2NH3(g) AG° = 53.8 kJ at 700K. Calculate AG for the above reaction at 700K if the reaction mixture consists of 20.0 atm of N2(g), 30.0 atm of H2(g), and 0.500 atm of NH3(g). A) -26.9 kJ B) 31.1 kJ C) -15.6 kJ D) 26.9 kJ E) -25.5 kJarrow_forwardExplain the structure of the phosphomolybdate anion [PMo12O40]3-.arrow_forwardg. NaI, H3PO4 h. 1. BH3/THF 2. H₂O2, OH i. HC1 j. Brarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning