
A ball of mass M = 5.00 kg and radius r = 5.00 cm is attached to one end of a thin, cylindrical rod of length L = 15.0 cm and mass m = 0.600 kg. The ball and rod, initially at rest in a vertical position and free to rotate around the axis shown in Figure P13.70, are nudged into motion. a. What is the rotational kinetic energy of the system when the ball and rod reach a horizontal position? b. What is the angular speed of the ball and rod when they reach a horizontal position? c. What is the linear speed of the center of mass of the ball when the ball and rod reach a horizontal position? d. What is the ratio of the speed found in part (c) to the speed of a ball that falls freely through the same distance?
FIGURE P13.70
(a)

The rotational kinetic energy of the system when the ball and rod reach a horizontal position.
Answer to Problem 70PQ
The rotational kinetic energy of the system when the ball and rod reach a horizontal position is
Explanation of Solution
For the isolated rod-ball-Earth system with no friction, the mechanical energy is conserved.
Here,
The initially the system has only potential energy and has no kinetic energy. At the final position, the entire potential energy is converted to kinetic energy. Thus, equation (I) can be modified as,
Write the expression for the initial potential energy of the given system.
Here,
Use equation (III) in (II) and solve for
For the uniform rod, the center of mass is at the mid-point. Since the length of the rod is
Conclusion:
Substitute
Therefore, the rotational kinetic energy of the system when the ball and rod reach a horizontal position is
(b)

The angular speed of the system when it reach the horizontal position.
Answer to Problem 70PQ
The angular speed of the system when it reach the horizontal position is
Explanation of Solution
The system can be assumed as, the sphere as a point particle which occupies at a distance
Write the expression for the rotational inertia of the given rod-ball system.
Here,
Write the expression for the rotational kinetic energy of the system at the horizontal position..
Here,
Solve equation (VI) for
Conclusion:
Substitute
Substitute
Therefore, the angular speed of the system when it reach the horizontal position is
(c)

The linear speed of the center of mass of the ball when the system reach the horizontal position.
Answer to Problem 70PQ
The linear speed of the center of mass of the ball when the system reach the horizontal position is
Explanation of Solution
It is obtained that the angular speed of the system when it reach the horizontal position is
Write the expression for the linear speed in terms of the angular speed.
Here,
Conclusion:
Substitute
Therefore, the linear speed of the center of mass of the ball when the system reach the horizontal position is
(d)

The ratio of the speed of the ball when the system is at the horizontal position and the speed of the ball that falls freely through the same distance.
Answer to Problem 70PQ
The ratio of the speed of the ball when the system is at the horizontal position and the speed of the ball that falls freely through the same distance is
Explanation of Solution
It is obtained that the linear speed of the center of mass of the ball when the system reach the horizontal position is
Write the expression for the speed of the freely balling ball.
Here,
Since the ball falls from rest, and reaches the ground, the initial speed is zero, and the final height is zero. Thus, equation (IX) can be modified and solved for
Conclusion:
Substitute
This indicates that the speed of the ball when the system is at the horizontal position and the speed of the ball that falls freely through the same distance are the same so that their ratio is obtained as,
Therefore, the ratio of the speed of the ball when the system is at the horizontal position and the speed of the ball that falls freely through the same distance is
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- 3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forward
- A certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forward
- A 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





