
Concept explainers
The total

Answer to Problem 55PQ
The total angular momentum of the system is
Explanation of Solution
The rotating system considered here is the Earth – Moon system. The total angular momentum of the system is equal to the sum of angular momentum of Moon orbiting the earth, the Moon’s rotational angular momentum, and the Earth’s rotational angular momentum. All these are acting in the same direction.
Write the equation to find the orbital angular momentum of Moon.
Here,
Write the equation to find the orbital speed of the Moon.
Here,
The orbit of Moon around the earth is circular. Therefore the distance travelled by Moon is equal to the perimeter of the circular orbit which is
Rewrite equation (II).
Substitute equation (III) in (I) to get
Now the equation for Moon’s rotational angular momentum is to be found.
Write the equation to find Moon’s rotational angular momentum.
Here,
Here Moon can be treated as a solid sphere to find the moment of inertia.
Write the equation to find the momentum of inertia of moon.
Here,
Substitute above equation in (V).
Write the equation to find the angular velocity of moon.
Here,
Since the same side of moon always faces the earth, its orbital period is equal to the rotational period of moon. Thus replace
Same procedure used to find the rotational angular momentum of Earth also.
Write the equation to find Earth’s rotational angular momentum.
Here,
Write the equation to find the momentum of inertia of Earth.
Here,
Substitute above equation in (VIII).
Write the equation to find the angular velocity of earth.
Here,
Substitute above equation in equation (IX).
The total angular momentum of the system is equal to the sum of angular momentum of Moon orbiting the earth, the Moon’s rotational angular momentum, and the Earth’s rotational angular momentum.
Write the equation to find the total angular momentum of the system.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the total angular momentum of the system is
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





