Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 42PQ
(a)
To determine
The
(b)
To determine
The angular momentum of Jupiter’s rotational motion.
(c)
To determine
The comparison of the results in part (a) and part (b).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A star with a mass of 3.41 x 1030 kilograms and a radius of 8.20 x 108 meters rotates on its axis once every 33 days.
a. What is the angular momentum of the star? Include units in your answer. b. After running out of fusible matter, the star collapses under its own gravity to form a pulsar with a radius of 24.1 kilometers. What is the period of rotation of the pulsar? Include units in your answer.
PLEASE ANSWER IN HANDWRITING
A star with a mass of 3.41 x 1030 kilograms and a radius of 8.20 x 108 meters rotates on its axis once every 33 days.a. What is the angular momentum of the star? Include units in your answer. More information. b. After running out of fusible matter, the star collapses under its own gravity to form a pulsar with a radius of 24.1 kilometers. What is the period of rotation of the pulsar? Include units in your answer. More information.
PLEASE ANSWER IN HANDWRITING
A disk with an initial angular velocity ω0 = 3.5 rad/s experiences a constant angular acceleration of α = 3.5 rad/s2 for a time period t = 55 s. Please answer the following questions.
a. Write an expression for the magnitude of the angular velocity of the disk at time t in terms of the given parameters.
b. Calculate the magnitude of the angular velocity of the disk in rad/s at time t.
c. Write an expression for the magnitude of the angular displacement θ traveled by a point on the disk during the angular acceleration described in terms of the given parameters. Assume the point starts at an angular displacement of 0 radians.
d. Calculate the magnitude of the angular displacement in radians traveled by a point on the disk during the acceleration described.
Chapter 13 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 13.1 - CASE STUDY When Is Energy Conserved? Under what...Ch. 13.6 - Figure 13.24 shows a particle with momentum p....Ch. 13.7 - Prob. 13.3CECh. 13.7 - Prob. 13.4CECh. 13.7 - Prob. 13.5CECh. 13 - Prob. 1PQCh. 13 - Prob. 2PQCh. 13 - A Frisbee flies across a field. Determine if the...Ch. 13 - Prob. 4PQCh. 13 - Prob. 5PQ
Ch. 13 - Rotational Inertia Problems 5 and 6 are paired. 5....Ch. 13 - A 12.0-kg solid sphere of radius 1.50 m is being...Ch. 13 - A figure skater clasps her hands above her head as...Ch. 13 - A solid sphere of mass M and radius Ris rotating...Ch. 13 - Suppose a disk having massMtot and radius R is...Ch. 13 - Problems 11 and 12 are paired. A thin disk of...Ch. 13 - Given the disk and density in Problem 11, derive...Ch. 13 - A large stone disk is viewed from above and is...Ch. 13 - Prob. 14PQCh. 13 - A uniform disk of mass M = 3.00 kg and radius r =...Ch. 13 - Prob. 16PQCh. 13 - Prob. 17PQCh. 13 - The system shown in Figure P13.18 consisting of...Ch. 13 - A 10.0-kg disk of radius 2.0 m rotates from rest...Ch. 13 - Prob. 20PQCh. 13 - Prob. 21PQCh. 13 - In Problem 21, what fraction of the kinetic energy...Ch. 13 - Prob. 23PQCh. 13 - Prob. 24PQCh. 13 - Prob. 25PQCh. 13 - A student amuses herself byspinning her pen around...Ch. 13 - The motion of spinning a hula hoop around one's...Ch. 13 - Prob. 28PQCh. 13 - Prob. 29PQCh. 13 - Prob. 30PQCh. 13 - Sophia is playing with a set of wooden toys,...Ch. 13 - Prob. 32PQCh. 13 - A spring with spring constant 25 N/m is compressed...Ch. 13 - Prob. 34PQCh. 13 - Prob. 35PQCh. 13 - Prob. 36PQCh. 13 - Prob. 37PQCh. 13 - Prob. 38PQCh. 13 - A parent exerts a torque on a merry-go-round at a...Ch. 13 - Prob. 40PQCh. 13 - Today, waterwheels are not often used to grind...Ch. 13 - Prob. 42PQCh. 13 - A buzzard (m = 9.29 kg) is flying in circular...Ch. 13 - An object of mass M isthrown with a velocity v0 at...Ch. 13 - A thin rod of length 2.65 m and mass 13.7 kg is...Ch. 13 - A thin rod of length 2.65 m and mass 13.7 kg is...Ch. 13 - Prob. 47PQCh. 13 - Two particles of mass m1 = 2.00 kgand m2 = 5.00 kg...Ch. 13 - A turntable (disk) of radius r = 26.0 cm and...Ch. 13 - CHECK and THINK Our results give us a way to think...Ch. 13 - Prob. 51PQCh. 13 - Prob. 52PQCh. 13 - Two children (m = 30.0 kg each) stand opposite...Ch. 13 - A disk of mass m1 is rotating freely with constant...Ch. 13 - Prob. 55PQCh. 13 - Prob. 56PQCh. 13 - The angular momentum of a sphere is given by...Ch. 13 - Prob. 58PQCh. 13 - Prob. 59PQCh. 13 - Prob. 60PQCh. 13 - Prob. 61PQCh. 13 - Prob. 62PQCh. 13 - A uniform cylinder of radius r = 10.0 cm and mass...Ch. 13 - Prob. 64PQCh. 13 - A thin, spherical shell of mass m and radius R...Ch. 13 - To give a pet hamster exercise, some people put...Ch. 13 - Prob. 67PQCh. 13 - Prob. 68PQCh. 13 - The velocity of a particle of mass m = 2.00 kg is...Ch. 13 - A ball of mass M = 5.00 kg and radius r = 5.00 cm...Ch. 13 - A long, thin rod of mass m = 5.00 kg and length =...Ch. 13 - A solid sphere and a hollow cylinder of the same...Ch. 13 - A uniform disk of mass m = 10.0 kg and radius r =...Ch. 13 - When a person jumps off a diving platform, she...Ch. 13 - One end of a massless rigid rod of length is...Ch. 13 - A uniform solid sphere of mass m and radius r is...Ch. 13 - Prob. 77PQCh. 13 - A cam of mass M is in the shape of a circular disk...Ch. 13 - Prob. 79PQCh. 13 - Consider the downhill race in Example 13.9 (page...Ch. 13 - Prob. 81PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A pulsar is a rapidly rotating neutron star. The Crab nebula pulsar in the constellation Taurus has a period of 33.510-3s , radius 10.0 km, and mass 2.81030kg . The pulsar’s rotational period will increase over time due to the release of electromagnetic radiation, which doesn’t change its radius but reduces its rotational energy. (a) What is the angular momentum of the pulsar? (b) Suppose the angular velocity decreases at a rate of 1014rad/s2 . What is the torque on the pulsar?arrow_forwardA particle of mass m moves along a straight line with constant velocity v0 in the x direction, a distance b from the x axis (Fig. P13.10). (a) Does the particle possess any angular momentum about the origin? (b) Explain why the amount of its angular momentum should change or should stay constant. (c) Show that Keplers second law is satisfied by showing that the two shaded triangles in the figure have the same area when . Figure P13.10arrow_forward(a) What is the angular momentum of the Moon in its orbit around Earth? (b) How does this angular momentum compare with the angular momentum of the Moon on its axis? Remember that the Moon keeps one side toward Earth at all times. (c) Discuss whether the values found in parts (a) and (b) seem consistent with the fact that tidal effects with Earth have caused the Moon to rotate with one side always facing Earth.arrow_forward
- (a) Calculate the rotational kinetic energy of Earth on its axis. (b) What is the rotational kinetic energy of Earth in its orbit around the Sun?arrow_forwardSuppose when Earth was created, it was not rotating. However, after the application of a uniform torque after 6 days, it was rotating at 1 rev/day. (a) What was the angular acceleration during the 6 days? (b) What torque was applied to Earth during this period? (c) What force tangent to Earth at its equator would produce this torque?arrow_forwardThe axis of Earth makes a 23.5 angle with a direction perpendicular to the plane of Earth’s orbit. As shown below, this axis precesses, making one complete rotation in 25,780 y. (a) Calculate the change in angular momentum in half this time. (b) What is the average torque producing this change in angular momentum? (c) If this torque were created by a pair of forces acting at the most effective point on the equator, what would the magnitude of each force be?arrow_forward
- A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardPart A Determine the angular momentum of a 78-g particle about the origin of coordinates when the particle is a Find the z-component. Express your answer using two significant figures. Lx = ΜΕ ΑΣΦ Submit Request Answer ▼Part B Find the y-component. Express your answer using two significant figures. Ο ΑΣΦ Ly= ? kg-m²/s ? kg-m²/sarrow_forwardA carousel with a radius of R = 3.0 meters is initially at rest. It is then given a constant angular acceleration ? = 0.6 rad/s2 . A. Sketch the physical situation and label your sketch with appropriate quantities from the problem statement. Make a table of known/given information and unknown/wanted information (this may involve reading the rest of the problem before starting). List any physical assumptions you will be making to solve the problem. B. What is the angular velocity of the carousel after t = 8 s? What is the linear velocity of a child located at 2.5 meters from the center of the carousel after t = 8.0 s? What is the tangential acceleration of the child at that time? What is the child’s radial acceleration at that time? C. Determine the magnitude and direction of the child’s total acceleration vector after 8 seconds. Add this vector to your diagram above and show the directions of the radial and tangential components. D. How many rotations does the carousel complete in the…arrow_forward
- A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top. a. What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. b. What is your speed?arrow_forward3. A particle has a linear momentum, P, of 0.752 kg-m/s at an angle of 0 = 65.0° as shown below. From location A, the particle's position vector, r, has a magnitude of 4.83 m. Calculate the magnitude of the particle's angular momentum about location A. Aarrow_forwarda. If the ball is released from rest at a height of 0.61 m above the bottom of the track on the no-slip side, what is its angular speed when it is on the frictionless side of the track? Assume the ball is a solid sphere of radius 2.5 cm and mass 0.14 kg.(Figure 1) Express your answer using two significant figures. rad/s b. how high does the ball rise on the frictionless side? h=____marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License