Concept explainers
(a)
The state of energy after it enters into the system where we pull a sled across a frozen lake. Also find whether the speed can remain constant or not if there is kinetic energy after doing the work.
(a)
Answer to Problem 1PQ
The thermal energy of ice and sled increases and the kinetic energy of sled also increases. Also constant speed can be maintained.
Explanation of Solution
Here the situation is pulling of a sled across a frozen lake. The system here is not completely frictionless. Therefore, the thermal energy of the system increases. The sled can move in constant speed. Also the kinetic energy of the sled can be increased as extra energy can be added to the system.
Conclusion:
Therefore, the thermal energy of ice and sled increases and the kinetic energy of sled also increase and constant speed can be maintained.
(b)
The state of energy after it enters into the system where we pull a sled up a snowy hill.
(b)
Answer to Problem 1PQ
Thermal energy will increase surely but the increase of kinetic energy is not sure.
Explanation of Solution
Here the sled is moved up a snowy hill. The system is not completely frictionless. So the frictional energy will increase. As the sled is moved up along a snowy hill against the gravity, the gravitational potential energy of the system will increase.
Conclusion:
Therefore, the thermal energy will increase surely but the increase of kinetic energy is not sure.
(c)
The state of energy after it enters into the system where a string wrapped around a pulley with a fixed axle is pulled.
(c)
Answer to Problem 1PQ
The thermal energy of the system increases, rotational energy may increase or remain constant.
Explanation of Solution
If the surface offers friction, the thermal energy of the system increases. If the spring rotates about the axle, the rotational energy increases. If the friction dissipates energy from the system, the rotational kinetic energy may increase or remain constant.
Conclusion:
Therefore, the thermal energy of the system increases, rotational energy may increase or remain constant.
(d)
The state of energy after it enters into the system where a cart with large wheels across a flat ground is pulled.
(d)
Answer to Problem 1PQ
The thermal energy of the system will increase, translational and rotational kinetic energy may also increase.
Explanation of Solution
If dissipative
Conclusion:
Therefore, the thermal energy of the system will increase, translational and rotational kinetic energy may also increase.
Want to see more full solutions like this?
Chapter 13 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- 6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forward
- ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning