Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 6FTD
How would the frequency of a horizontal mass–spring system change if it were taken to the Moon? Of a vertical mass–spring system? Of a simple pendulum?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 13.1 - A typical human heart rate is about 65 beats per...Ch. 13.2 - Two identical mass-spring systems are displaced...Ch. 13.3 - What happens to the period of a pendulum if (l)...Ch. 13.4 - Figure 13.18 shows the paths traced in the...Ch. 13.5 - Two different mass-spring systems are oscillating...Ch. 13.6 - The figure shows displacement-versus-time graphs...Ch. 13.7 - The photo shows a wineglass shattering in response...Ch. 13 - Is a vertically bouncing ball an example of...Ch. 13 - The vibration frequencies of molecules are much...Ch. 13 - What happens to the frequency of a simple harmonic...
Ch. 13 - If the spring of a simple harmonic oscillator is...Ch. 13 - How does the frequency of a simple harmonic...Ch. 13 - How would the frequency of a horizontal massspring...Ch. 13 - When in its cycle is the acceleration of an...Ch. 13 - Explain how simple harmonic motion might be used...Ch. 13 - One pendulum consists of a solid rod of mass m and...Ch. 13 - The x- and y-components of motion of a body are...Ch. 13 - Why is critical damping desirable in a cars...Ch. 13 - Explain why the frequency of a damped system is...Ch. 13 - Opera singers have been known to break glasses...Ch. 13 - What will happen to the period of a massspring...Ch. 13 - How can a system have more than one resonant...Ch. 13 - Prob. 16ECh. 13 - A violin string playing the note A oscillates at...Ch. 13 - The vibration frequency of a hydrogen chloride...Ch. 13 - Write expressions for the displacement x(t) in...Ch. 13 - The top of a skyscraper sways back and forth,...Ch. 13 - A hummingbirds wings vibrate at about 45 Hz. Whats...Ch. 13 - A 200-g mass is attached to a spring of constant k...Ch. 13 - An automobile suspension has an effective spring...Ch. 13 - The quartz crystal in a watch executes simple...Ch. 13 - A 342-g mass is attached to a spring and undergoes...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - A particle undergoes simple harmonic motion with...Ch. 13 - How long should you make a simple pendulum so its...Ch. 13 - At the heart of a grandfather clock is a simple...Ch. 13 - A 622-g basketball with 24.0-cm diameter is...Ch. 13 - A meter stick is suspended from one end and set...Ch. 13 - A wheel rotates at 600 rpm. Viewed from the edge,...Ch. 13 - The x- and y-components of an objects motion are...Ch. 13 - A 450-g mass on a spring is oscillating at 1.2 Hz....Ch. 13 - A torsional oscillator of rotational inertia 1.6...Ch. 13 - Youre riding in a friends 1400-kg car with bad...Ch. 13 - The vibration of a piano string can be described...Ch. 13 - A massspring system has b/m = 0/5, where b is the...Ch. 13 - A cars front suspension has a natural frequency of...Ch. 13 - A simple model for carbon dioxide consists of...Ch. 13 - Two identical massspring systems consist of 430-g...Ch. 13 - The human eye and muscles that hold it can be...Ch. 13 - A mass m slides along a frictionless horizontal...Ch. 13 - Prob. 44PCh. 13 - A physics student, bored by a lecture on simple...Ch. 13 - A pendulum of length L is mounted in a rocket....Ch. 13 - The protein dynein powers the flagella that propel...Ch. 13 - A mass is attached to a vertical spring, which...Ch. 13 - Derive the period of a simple pendulum by...Ch. 13 - A solid disk of radius R is suspended from a...Ch. 13 - A thin steel beam is suspended from a crane and is...Ch. 13 - A cyclist turns her bicycle upside down to repair...Ch. 13 - An object undergoes simple harmonic motion in two...Ch. 13 - The muscles that drive insect wings minimize the...Ch. 13 - A pendulum consists of a 320-g solid ball 15.0 cm...Ch. 13 - If Jane and Tarzan are initially 8.0 m apart in...Ch. 13 - A small mass measuring device (SMMD) used for...Ch. 13 - A thin, uniform hoop of mass M and radius R is...Ch. 13 - A mass m is mounted between two springs with...Ch. 13 - The equation for an ellipse is (x2/a2) + (y2/b2) =...Ch. 13 - Show that the potential energy of a simple...Ch. 13 - The total energy of a massspring system is the sum...Ch. 13 - A solid cylinder of mass M and radius R is mounted...Ch. 13 - A mass m is free to slide on a frictionless track...Ch. 13 - A 250-g mass is mounted on a spring of constant k...Ch. 13 - A harmonic oscillator is underdamped if the...Ch. 13 - A massless spring with k = 74 N/m hangs from the...Ch. 13 - A meter stick is suspended from a frictionless rod...Ch. 13 - A particle of mass m has potential energy given by...Ch. 13 - Two balls with the same unknown mass m are mounted...Ch. 13 - Two mass-spring systems with the same mass are...Ch. 13 - Two mass-spring systems have the same mass and the...Ch. 13 - A 500-g mass is suspended from a thread 45 cm long...Ch. 13 - A 500-g block on a frictionless, horizontal...Ch. 13 - Repeat Problem 64 for a small solid ball of mass M...Ch. 13 - Youre working on the script of a movie whose plot...Ch. 13 - A 1.2-kg block rests on a frictionless surface and...Ch. 13 - A disk of radius R is suspended from a pivot...Ch. 13 - Prob. 79PCh. 13 - Youre a structural engineer working on a design...Ch. 13 - Show that x(t) = a cos t bsin t represents simple...Ch. 13 - Youre working for the summer with an ornithologist...Ch. 13 - While waiting for your plane to take off, you...Ch. 13 - Youre working for a playground equipment company,...Ch. 13 - Youve inherited your great-grandmothers mantle...Ch. 13 - This problem explores the nonlinear pendulum...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...Ch. 13 - Physicians and physiologists are interested in the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Another cross in Drosophila involved the recessive, X-linked genes yellow (y), white (w), and cut (ct). A yello...
Concepts of Genetics (12th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Some people think a pendulum with a period of 1.00 s can be driven with “mental energy” or psycho kinetically, because its period is the same as an average heartbeat. True or not, what is the length of such a pendulum?arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forwardIf a simple pendulum oscillates with small amplitude and its length is doubled, what happens to the frequency of its motion? (a) It doubles. (b) It becomes 2 times as large. (c) It becomes half as large. (d) It becomes 1/2 times as large. (e) It remains the same.arrow_forward
- Show that the time rate of change of mechanical energy for a damped, undriven oscillator is given by dE/dt = bv2 and hence is always negative. To do so, differentiate the expression for the mechanical energy of an oscillator, E=12mv2+12kx2, and use Equation 15.51.arrow_forwardA 200-g block is attached to a horizontal spring and executes simple harmonic motion with a period of 0.250 s. The total energy of the system is 2.00 J. Find (a) the force constant of the spring and (b) the amplitude of the motion.arrow_forwardShow that angular frequency of a physical pendulum phy=mgrCM/I (Eq. 16.33) equals the angular frequency of a simple pendulum smp=g/, (Eq. 16.29) in the case of a particle at the end of a string of length .arrow_forward
- A simple pendulum has a length of 52.0 cm and makes 82.0 complete oscillations in 2.00 min. Find (a) the period of the pendulum and (b) the value of g at the location of the pendulum.arrow_forwardA blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardAn object of mass m moves in simple harmonic motion with amplitude 12.0 cm on a light spring. Its maximum acceleration is 108 cm/s2. Regard m as a variable. (a) Find the period T of the object. (b) Find its frequency f. (c) Find the maximum speed vmax of the object. (d) Find the total energy E of the objectspring system. (e) Find the force constant k of the spring. (f) Describe the pattern of dependence of each of the quantities T, f, vmax, E, and k on m.arrow_forward
- A 500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.arrow_forwardIf a car has a suspension system with a force constant of 5.00104 N/m , how much energy must the car’s shocks remove to dampen an oscillation starting with a maximum displacement of 0.0750 m?arrow_forwardA small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, total time intervals for 50 oscillations of 99.8 s, 86.6 s, and 71.1s are measured with a stopwatch. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements and compare it with the accepted value. (c) Plot T2 versus L and obtain a value for g from the slope of your best-fit straight-line graph. (d) Compare the value found in part (c) with that obtained in part (b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY