Concept explainers
(a)
Interpretation: The value of
Concept Introduction:
A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.
The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form
(a)
Answer to Problem 47E
Explanation of Solution
Given:
For the given reaction:
(b)
Interpretation: The value of
Concept Introduction:
A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.
The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the
(b)
Answer to Problem 47E
Explanation of Solution
Given:
For the given reaction:
(c)
Interpretation: The value of
Concept Introduction:
A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.
The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the
(c)
Answer to Problem 47E
Explanation of Solution
For the given reaction:
(d)
Interpretation: The value of
for the given reaction in gas phase needs to be determined with the help of bond energy value:
Concept Introduction:
A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.
The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form chemical bonds in product can be used to calculate the
(d)
Answer to Problem 47E
Explanation of Solution
For the given reaction:
Want to see more full solutions like this?
Chapter 13 Solutions
Chemical Principles
- Given the following data: NO2(g) NO(g) + O(g)H = 233 kJ 2O3(g) 3O2(g)H = 427 kJ NO(g) + O3(g) NO2(g) + O2(g)H = 199 kJ Calculate the bond energy for the O2 bond, that is, calculate H for: O2(g) 2O(g)H = ?arrow_forwardWrite Lewis structures for CO32, HCO3, and H2CO3. When acid is added to an aqueous solution containing carbonate or bicarbonate ions, carbon dioxide gas is formed. We generally say that carbonic acid (H2C03) is unstable. Use bond energies to estimate E for the reaction (in the gas phase) H2CO3CO2+H2O Specify a possible cause for the instability of carbonic acid.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forward
- The molecular structure shown is of one form of glucose, C6H12O6 Glucose can be oxidized to carbon dioxide and water according to the equation C6H12O6(S) + 6 O2(g)6 CO2(g) + 6 H2O(g) (a) Using the method described in Section 6-6a for estimating enthalpy changes from bond energies, estimate rH for the oxidation of this form of glucose. Make a list of all bonds broken and all bonds formed in this process. (b) Compare your result with the experimental value of 2816 kJ/mol for combustion of glucose. Why might there be a difference between this value and the one you calculated in part (a)?arrow_forwardhat is meant by the term driving forces? Why are mailer spread and energy spread considered to be driving forces?arrow_forwardEstimate ΔrH° for forming 2 mol ammonia from molecular nitrogen and molecular hydrogen. Is this reaction exothermic or endothermic?arrow_forward
- hat is the enthalpy change for a process? Is enthalpy a state function? In what experimental apparatus are enthalpy changes measured?arrow_forwardWrite Lewis structures for CO32, HCO3, and H2CO3. When acid is added to an aqueous solution containing carbonate or bicarbonate ions, carbon dioxide gas is formed. We generally say that carbonic acid (H2CO3) is unstable. Use bond energies to estimate H for the reaction (in the gas phase) H2CO3 CO2 + H2O Specify a possible cause for the instability of carbonic acid.arrow_forwardUse Equation 6.1 and values from Table 6.2 to estimate the enthalpy change when methane, CH4, and oxygen combine according to the equation: CH4(g) + 2 O2(g) CO2(g) + 2 H2O(g)arrow_forward
- Concerning the reaction: HCN (g)-> H (g) + C (g) + N (g) which statement is flase? The reaction is known as atomization reaction. A The enthalpy of this reaction is positive. B. C. The enthalpy of this reaction is equal to the sum of enthalpies of formation the atoms: H, C, and N. The enthalpy of this reaction is equal to the sum of the bond energies of C-H and CEN. D.arrow_forwardFor the reaction: 2C4H10(g) 13O2(g) + 8CO2(g )+ 10H2O(g) Part 1) Predict the enthalpy of reaction from the average bond enthalpies. Be sure your answer has the correct number of significant digits. Note: Reference the Bond energies table for additional information. =ΔHorxn kJmol Part 2) Calculate the enthalpy of reaction from the standard enthalpies of formation of the reactant and product molecules. Be sure your answer has the correct number of significant digits. Note: Reference the Thermodynamic properties of pure substances table for additional information. =ΔHorxn kJmol Pls help me with this question asap!!!arrow_forwardUse bond energy values to estimate ΔH for the following reaction in the gas phase. 4 NH3(g) + 3 O2(g) --> 2 N2(g) + 6 H2O(g)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning