EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 33QLP
It is known that in thread rolling, as illustrated in Fig. 13.16, a workpiece must make roughly six revolutions to form the thread. Under what conditions (process parameters, thread geometry or workpiece properties) can deviation from this rule take place?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 40 mm thick plate made from 410 grade stainless steel is to be reduced to 34 mm in one pass in a rolling operation. As the thickness is reduced, the plate widens by 3%. The entrance speed of the plate is 13 m/min and the roll radius is 310 mm with a rotational speed of 30 rpm.
5.1 Calculate the minimum coefficient of friction required, that will make the rolling operation possible.
5.2 Calculate the exit velocity of the plate.
5.3 Calculate the forward slip.
5.4 If the final width of the sheet is 200 mm, calculate the required roll force.
5.5 Explain what is roll flattening, its effects and how it can be reduced.
Need neat and clean handwritten solution explaining every steps. Do not give copied solution from chegg else you will get downvote
A 40 mm thick plate made from 410 grade stainless steel is to be reduced to 34 mm in one pass in a rolling operation. As the thickness is reduced, the plate widens by 3%. The entrance speed of the plate is 13 m/min and the roll radius is 310 mm with a rotational speed of 30 rpm.
To do
5.1 If the final width of the sheet is 200 mm, calculate the required roll force.
5.2. Explain what is roll flattening, its effects and how it can be reduced.
Chapter 13 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 13 - What is the difference between a plate and a...Ch. 13 - Define roll gap, neutral point, and draft.Ch. 13 - What factors contribute to spreading in flat...Ch. 13 - What is forward slip? Why is it important?Ch. 13 - Describe the types of deflections that rolls...Ch. 13 - Describe the difference between a bloom, a slab,...Ch. 13 - Why may roller leveling be a necessary operation?Ch. 13 - List the defects commonly observed in flat...Ch. 13 - What are the advantages of tandem rolling? Pack...Ch. 13 - How are seamless tubes produced?
Ch. 13 - Why is the surface finish of a rolled product...Ch. 13 - What is a Sendzimir mill? What are its important...Ch. 13 - What is the Mannesmann process? How is it...Ch. 13 - Describe ring rolling. Is there a neutral plane in...Ch. 13 - How is back tension generated?Ch. 13 - Explain why the rolling process was invented and...Ch. 13 - Flat rolling reduces the thickness of plates and...Ch. 13 - Explain how the residual stress patterns shown in...Ch. 13 - Explain whether it would be practical to apply the...Ch. 13 - Describe the factors that influence the magnitude...Ch. 13 - Explain how you would go about applying front and...Ch. 13 - What typically is done to make sure that the...Ch. 13 - Make a list of parts that can be made by (a) shape...Ch. 13 - Describe the methods by which roll flattening can...Ch. 13 - It was stated that spreading in flat rolling...Ch. 13 - Flat rolling can be carried out by front tension...Ch. 13 - Explain the consequence of applying too high a...Ch. 13 - Note in Fig. 13.3f that the driven rolls (powered...Ch. 13 - Describe the importance of controlling roll...Ch. 13 - In Fig. 13.9a, if you remove the top compressive...Ch. 13 - Name several products that can be made by each of...Ch. 13 - List the possible consequences of rolling at (a)...Ch. 13 - It is known that in thread rolling, as illustrated...Ch. 13 - If a rolling mill encounters chatter, what process...Ch. 13 - Can the forward slip ever become negative? Why or...Ch. 13 - In Example 13.1, calculate the roll force and the...Ch. 13 - Calculate the individual drafts in each of the...Ch. 13 - Estimate the roll force, F, and the torque for an...Ch. 13 - A rolling operation takes place under the...Ch. 13 - Estimate the roll force and power for annealed...Ch. 13 - A flat-rolling operation is being carried out...Ch. 13 - A simple sketch of a four-high mill stand is shown...Ch. 13 - Obtain a piece of soft, round rubber eraser, such...Ch. 13 - If you repeat the experiment in Problem 13.45 with...Ch. 13 - Design a set of rolls to produce cross-sections...Ch. 13 - Design an experimental procedure for determining...Ch. 13 - Derive an expression for the thickest workpiece...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 2. It is reduced to 80 mm with forging by stacking a part with a height of 120 mm and a diameter of 75 mm. The friction coefficient between the workpiece and the mold is 0.13. The flow curve of the workpiece is defined by a strength coefficient of 165 MPa and a ping-top of 0.24. Calculate the force during the process at the moments given below and obtain the force-workpiece height graph (1) as soon as it reaches the flow point (flow unit shape change = 0.002), (2) height h = 115 mm, (3) height h = 110 mm, (4) height h = 105 mm, (5) height h = 100 mm, (6) height h = 95 mm, (7) height h = 90 mm, (8) height h = 85 mm, (9) height h = 80 mm,arrow_forwardA 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.arrow_forwardThe thickness of a sheet is reduced by rolling (without any change in width) using 600 mm diameter rolls. Neglect elastic deflection of the rolls and assume that the coefficient of friction at the roll-workpiece interface is 0.05. The sheet enters the rotating rolls unaided. If the initial sheet thickness is 2 mm, the minimum possible final thickness that can be produced by this process in a single pass isarrow_forward
- Explain the function of backing rolls in Four High Rolling Mill and Cluster Rolling Mill. please explainarrow_forwardWalk-Through Video Dashboard Note: - You are attempting question 4 out of 12 In a rolling operation, a plate of 2 cm thick and 25 cm wide is passed through a rolling mill having 2 powered rolls. Assume friction was enough for rolling. Thickness of the plate at the end of operation is 1.7 cm. Each roll has a radius of 0.3 m and a roll speed of 0.5 revolution per second. Flow curve has the following values K = 225 MPa and n = 0.15. Determine the power required for driving the rolls.arrow_forward2. A 300 mm wide, 40 mm thick plate is reduced to 30 mm thickness in one pass by hot rolling. Roll diameter is 200 mm and entrance speed is 16 m/min. Material constants C and m at the process temperature are given as 50 MPa and 0.05 respectively. Determine: a. The minimum friction coefficient required to make this operation possible, b. Assuming that the minimum level of friction is maintained, calculate the exit velocity of the plate by considering there is no widening, c. Calculate the force and power requirement to apply the pass.arrow_forward
- A 200 mm wide and 42.0 mm thick plate made of low carbon steel is to be reduced in one pass in a rolling operation. As the thickness is reduced, the plate widens by 4%. The entrance speed of the plate is 15.0 m/min. The roll radius is 325 mm and the rotational speed is 49.0 rev/min. i. If the current horsepower of the available rolling machine is 950 HP, how much thickness could the machine reduce the plate thickness to? ii. If the required thickness needs to be 34.0mm, how could the original width of the plate be changed in order to use the same machine?arrow_forwardQ/ A plate of 270 mm wide and 25 mm thick from carbon steel. A two-high rolling mill is used to reduce the thickness to 20 mm. Roll radius = 600 mm, and roll speed = 8 rpm. Strength coefficient = 500 MPa, and strain hardening exponent = 0.25. Determine (a) roll force, (b) roll torque, and (c) power required to perform the operation.arrow_forward15 A cylindrical workpiece is forged in an open die. The workpiece is 60 mm in diameter and 30 mm high. The height after forging is 15 mm. The coefficient of friction at the die-work interface is 0.20. The flow curve equation for the workpiece is defined as, 0 = 800 80.2 where o is in MPa. The forging force (in MN) at the end of the stroke is closest toarrow_forward
- Please Identify the correct answer along with concise reasoning( Step-by-step is preferred) on why the selected option is the right answer. Please also explain concisely why the remaining options are incorrect. I'll rate for the response positively if the answer is correct. Thx!arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardCompare hot and cold rolling products in terms of surface quality, mechanical properties, force required for rolling.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License