CHEMISTRY:MOLECULAR NATURE (LL)W/ACCESS
7th Edition
ISBN: 9781119497325
Author: JESPERSEN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 26RQ
How is the half-life of a zero-order reaction affected by the initial reactant concentration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
CHEMISTRY:MOLECULAR NATURE (LL)W/ACCESS
Ch. 13 - The iodate ion reacts with sulfite ions in the...Ch. 13 - Hydrogen sulfide burns in oxygen ro form sulfur...Ch. 13 - Use the graph in Figure 13.5 to estimate the rare...Ch. 13 - Practice Exercise 13.4 Use the graph in Figure...Ch. 13 - Prob. 5PECh. 13 - The rate law for the decomposition of HItoI2andH2...Ch. 13 - The reaction, BrO3-+3SO32-Br-+3SO42- has the rate...Ch. 13 - Practice Exercise 13.8
A certain reaction has an...Ch. 13 - Practice Exercise 13.9
For the reaction of with...Ch. 13 - Use the data from the other four experiments in...
Ch. 13 - Practice Exercise 13.11
Use the rate law...Ch. 13 - The following reaction is investigated to...Ch. 13 - Ordinary sucrose (table sugar) reacts with water...Ch. 13 - Practice Exercise 13.14 A certain reaction has the...Ch. 13 - When designing a consumer product, it is desirable...Ch. 13 - Practice Exercise 13.16
In Practice Exercise...Ch. 13 - Practice Exercise 13.17
In Practice Exercise...Ch. 13 -
Practice Exercise 13.15
From the answer to...Ch. 13 - Practice Exercise 13.19 The radioactive isotope,...Ch. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - For the reaction in Example 13.10, determine how...Ch. 13 - Practice Exercise 13.23
A sample of nitrosyl...Ch. 13 - Practice Exercise 13.24
The reaction is second...Ch. 13 - Suppose that the value of t1/2 for a certain...Ch. 13 - The reaction CH3I+HICH4+I2 was observed to have...Ch. 13 - Practice Exercise 13.27
Ozone decomposes to form...Ch. 13 - Prob. 28PECh. 13 - Practice Exercise 13.29
Select the reactions below...Ch. 13 - Ozone, O3, reacts with nitric oxide, NO, to form...Ch. 13 - Practice Exercise 13.31
The mechanism for the...Ch. 13 - Why are chemical reactions usually carried out in...Ch. 13 - 13.2 Give an example from everyday experience of...Ch. 13 - 13.3 What is a homogeneous reaction? What is a...Ch. 13 - How does particle size affect the rate of a...Ch. 13 - Prob. 5RQCh. 13 - 13.6 The rate of hardening of epoxy glue depends...Ch. 13 - 13.7 A PolaroidTM instant photograph develops...Ch. 13 - Prob. 8RQCh. 13 - 13.9 Persons who have been submerged in very cold...Ch. 13 - How does an instantaneous rate of reaction differ...Ch. 13 - What is the difference between the rate of...Ch. 13 - Explain how the initial instantaneous rate of...Ch. 13 - 13.13 What are the units of reaction rate? What is...Ch. 13 - 13.14 Describe how to determine the instantaneous...Ch. 13 - What are the units of the rate constant for (a) a...Ch. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled and...Ch. 13 - If the concentration of a reactant is doubled, by...Ch. 13 - In an experiment, the concentration of a reactant...Ch. 13 - Biological reactions usually involve the...Ch. 13 - Rearrange the integrated rate equations for (a) a...Ch. 13 - 13.24 How is the half-life of a first-order...Ch. 13 - 13.25 How is the half-life of a second-order...Ch. 13 - How is the half-life of a zero-order reaction...Ch. 13 - 13.27 Derive the equations for for first- and...Ch. 13 - 13.28 The integrated rate law for a zero-order...Ch. 13 - Which of the following graphs represents the data...Ch. 13 - 13.30 What is the basic postulate of collision...Ch. 13 - What two factors influence the effectiveness of...Ch. 13 - In terms of the kinetic theory, why does an...Ch. 13 - Prob. 33RQCh. 13 - Prob. 34RQCh. 13 - Draw a potential energy diagram for an exothermic...Ch. 13 - 13.36 Some might say that the “transition state...Ch. 13 - What is the activation energy? How is the...Ch. 13 - 13.38 The decomposition of carbon dioxide,
has an...Ch. 13 - 13.39 Draw the potential energy diagram for an...Ch. 13 - What is the definition of an elementary process?...Ch. 13 - What is a rate-determining step?Ch. 13 - What is an intermediate in the context of reaction...Ch. 13 - Free radicals are discussed in Chemistry Outside...Ch. 13 - Suppose we compared two reactions, one requiring...Ch. 13 - In what way is the rate law for a reaction related...Ch. 13 - How does an elementary process relate to (a) the...Ch. 13 - How does a catalyst increase the rate of a...Ch. 13 - 13.48 What is a homogeneous catalyst? How does it...Ch. 13 - What is the purpose of the catalytic converter...Ch. 13 - Tell how you would recognize a catalyst in a...Ch. 13 - Prob. 51RQCh. 13 - Why should leaded gasoline not be used in cars...Ch. 13 - The following data were collected at a certain...Ch. 13 - 13.54 The following data were collected for the...Ch. 13 - For the reaction, 2A+B3C, it was found that the...Ch. 13 - In the reaction, 3H2+N22NH3, how does the rate of...Ch. 13 - In the combustion of hexane (a low-boiling...Ch. 13 - At a certain moment in the reaction 2N2O54NO2+O2...Ch. 13 - Consider the reaction,...Ch. 13 - 13.60 The decomposition of phosphine, a very toxic...Ch. 13 - 13.61 Estimate the rate of the reaction,
given...Ch. 13 - 13.62 Estimate the rate of the reaction,
given...Ch. 13 - The oxidation of NO (released in small amounts in...Ch. 13 - The rate law for the decomposition of N2O5 is rate...Ch. 13 - The rate law for a certain enzymatic reaction is...Ch. 13 - 13.66 Radon-220 is radioactive, and decays into...Ch. 13 - The following data were collected for the reaction...Ch. 13 - Cyclopropane, C3H6, is a gas used as a general...Ch. 13 - 13.69 The reaction of iodide ion with hypochlorite...Ch. 13 - 13.70 The formation of small amounts of nitrogen...Ch. 13 - At a certain temperature, the following data were...Ch. 13 - The following data were obtained for the reaction...Ch. 13 - Data for the decomposition of SO2Cl2 according to...Ch. 13 - Prob. 74RQCh. 13 - The decomposition of SO2Cl2 described in Problem...Ch. 13 - 13.76 The decomposition of acetaldehyde, was...Ch. 13 - If it takes 75.0 min for the concentration of a...Ch. 13 - It takes 15.4 minutes for the concentration of a...Ch. 13 - The concentration of a drug in the body is often...Ch. 13 - 13.80 Phosphine, , decomposes into phosphorus, ,...Ch. 13 - Hydrogen iodide decomposes according to the...Ch. 13 - 13.82 The reaction of to form is second...Ch. 13 - Using the information determined in Problem 13.79,...Ch. 13 - The second-order rate constant for the...Ch. 13 - The half-life of a certain first-order reaction is...Ch. 13 - Strontium-90 has a half-life of 28 years. How long...Ch. 13 - 13.87 Using the graph from Problem 13.53,...Ch. 13 - Using the graph from Problem 13.54, determine how...Ch. 13 - Hydrogen peroxide, which decomposes in a...Ch. 13 - SO2Cl2 decomposes in a first-order process with a...Ch. 13 - Prob. 91RQCh. 13 - A tree killed by being buried under volcanic ash...Ch. 13 - Prob. 93RQCh. 13 - Prob. 94RQCh. 13 - The following data were collected for a reaction:...Ch. 13 - Rate constants were measured at various...Ch. 13 - NOCl decomposes as:...Ch. 13 - 13.98. The conversion of cyclopropane, an...Ch. 13 - The decomposition of N2O5 has an activation energy...Ch. 13 - At 35C, the rate constant for the reaction...Ch. 13 - The oxidation of NO to NO2, one of the reactions...Ch. 13 - A reaction has the following mechanism:...Ch. 13 - If the reaction NO2+CONO+CO2 occured by a one-step...Ch. 13 - If the reaction 2NO2(g)+F2(g)2NO2F(g) occurred by...Ch. 13 - Consider the general reaction AB+CAC+B If this...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide to...Ch. 13 - 13.107. The oxidation of nitrogen monoxide with...Ch. 13 - The reaction of chloroform and chlorine forms...Ch. 13 - The following data were collected for the reaction...Ch. 13 - The age of wine can be determined by measuring the...Ch. 13 - 13.111 On the following graph, label the products,...Ch. 13 - Carbon-14 dating can be used to estimate the age...Ch. 13 - *13.113 What percentage of cesium chloride made...Ch. 13 - For the following reactions, predict how the rate...Ch. 13 - One of the reactions that occurs in polluted air...Ch. 13 - * 13.116 Suppose a reaction occurs with the...Ch. 13 - The decomposition of urea, (NH2)2CO,in0.10MHCl...Ch. 13 - Show that for a reaction that obeys the general...Ch. 13 - 13.119 The rates of many reactions approximately...Ch. 13 - If the rate constant for a first-order reaction is...Ch. 13 - For the following potential energy diagram, which...Ch. 13 - Prob. 122RQCh. 13 - Prob. 123RQCh. 13 -
*13.124 The cooking of an egg involves the...Ch. 13 -
*13.125 The following question is based on...Ch. 13 - Prob. 126RQCh. 13 - The experimental rate law for the reaction...Ch. 13 - Radioactive samples are considered to become...Ch. 13 - Use a spreadsheet to generate a graph for the data...Ch. 13 - 13.130 Use a spreadsheet to generate separate...Ch. 13 - Prob. 131RQCh. 13 - The catalyzed decomposition of ethanol at 327C has...Ch. 13 - *13.133 On December 19, 2007, the T2 Laboratories,...Ch. 13 - Prob. 134RQCh. 13 - Prob. 135RQCh. 13 - Can a reaction have a negative activation energy?...Ch. 13 - *13.137 Assume you have a three-step mechanism....Ch. 13 - 13.138 What range of ages can dating reliably...Ch. 13 - 13.139 Why are initial reaction rates used to...Ch. 13 - If a reaction is reversible (i.e., the products...Ch. 13 - Prob. 141RQCh. 13 - *13.142 How would you measure the rate of an...Ch. 13 - * 13.143 For a reaction done on the ton scale,...Ch. 13 - 13.44 Can we use molality instead of molarity in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
15. Passenger Balloons
Long-distance balloon flights are usually made using a hot-air- balloon/helium-balloon h...
College Physics: A Strategic Approach (3rd Edition)
Differentiate between these terms: chromosome, chromatin, and chromatid.
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Derive an expression for the half-life of a a third order reaction;b a reaction whose order is =1; c a reaction whose order is 12. In these last two cases, examples are rare but known.arrow_forwardMany biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardAs with any drug, aspirin (acetylsalicylic acid) must remain in the bloodstream long enough to be effective. Assume that the removal of aspirin from the bloodstream into the urine is a lirst-order reaction, with a half-life of about 3 hours. The instructions on an aspirin bottle say to take 1 or 2 tablets every 4 hours. If a person takes 2 aspirin tablets, how much aspirin remains in the bloodstream when it is time for the second dose? (A standard tablet contains 325 mg of aspirin.)arrow_forward
- In a first-order reaction, suppose that a quantity X of a reactant is added at regular intervals of time, t. At first the amount of reactant in the system builds up; eventually, however, it levels off at a saturation value given by the expression a saturation value saturationvalue= x110a where a=0.30tt1/2 This analysis applies to prescription drugs, of which you take a certain amount each day. Suppose that you take 0.100 g of a drug three times a day and that the half-life for elimination is 2.0 days. Using this equation, calculate the mass of the drug in the body at saturation. Suppose further that side effects show up when 0.500 g of the drug accumulates in the body. As a pharmacist, what is the maximum dosage you could assign to a patient for an 8-h period without causing side effects?arrow_forwardThe decomposition of ozone is a second-order reaction with a rate constant of 30.6 atm1 s1 at 95 C. 2O3(g)3O2(g) If ozone is originally present at a partial pressure of 21 torr, calculate the length of time needed for the ozone pressure to decrease to 1.0 torr.arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forward
- If a reaction has the same rate constant, what time does it take for a reactant to decrease by 5 that is, still near the beginning of the reaction process if the kinetics are zeroth-order, first-order, and second-order with respect to that reactant?arrow_forwardThe gas-phase reaction of nitrogen monoxide with chlorine proceeds to form nitrosyl chloride. 2NO(g)+Cl2(g)2NOCl(g)rate=k[NO]2[Cl]2 Evaluate the following proposed mechanism to determine whether it is consistent with the experimental results, and identify intermediates, if any. 2NOk1k1N2O2Fast,reversibleN2O2(g)+Cl2(g)2NOCl(g)Slow(rate-limiting)steparrow_forwardAt 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forward
- One can also define a third-life, t1/3, which is the amount of time necessary for one-third of an original amount of reactant to react. a For which order of kinetics is the third-life a constant? b Derive an expression for the t1/3 of a zeroth-order reaction. For how many third-lives will the reaction proceed before completion?arrow_forwardA drug decomposes in the blood by a first-order process. A pill containing 0.500 g of the active ingredient reaches its maximum concentration of 2.5 mg/ 100 mL of blood. If the half-life of the active ingredient is 75 min, what is its concentration in the blood 2.0 h after the maximum concentration has been reached?arrow_forwardThe rate of the reaction HOCH2CH2NO2+2HNO2NO2CH2CH2NO2+2H2O is 0.045molHNO2/s. What are the rates of appearance and disappearance with respect to the other three substances?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY