Determine currents I1, I2, and I3 in the circuit of Fig. 13.89. Find the energy stored in the coupled coils at t = 2 ms. Take ω = 1,000 rad/s.
Calculate the currents
Answer to Problem 20P
The currents
Explanation of Solution
Given data:
Refer to Figure 13.89 in the textbook for the circuit with coupled coils.
The value of
Calculation:
Calculate the mutual inductance in frequency domain.
Modify the Figure 13.89 by transforming the current source
From Figure 1, consider that the loops 1 and 2 contain the currents
Apply Kirchhoff's voltage law to the loop 1 in Figure 1.
Apply Kirchhoff's voltage law to the loop 2 in Figure 1.
Write equations (1) and (2) in matrix form as follows.
Write the MATLAB code to solve the equation (3).
A = [(4+j*5) j*10;j*10 (8+j*5)];
B = [j*12; -20];
C = inv(A)*B
The output in command window:
C =
0.75354 + 2.34381i
-0.11429 - 0.87049i
From the MATLAB output, the currents
And
From Figure 1, consider the expression for the current
Substitute
Write the current
Substitute 2 ms for t in Equation (4).
Substitute 2 ms for t in Equation (5).
From Figure 13.81, find the inductor values.
Calculate the inductor
Substitute 1000 for
Calculate the inductor
Substitute 1000 for
And
Calculate the mutual inductance.
Substitute 0.01 H for
Write the expression for the total energy stored in the coupled coils.
Substitute 0.01 H for
Conclusion:
Thus, the currents
Want to see more full solutions like this?
Chapter 13 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- Consider a Continuous- time LTI System. described by y' (+)+ nycH) = x(+) find yet for усн b) x(+) = u(+) Sul. a) x(+)= ētu(+). c) X(+= √(+) jw few) +2 kW) = X (w) (jw+2) Y(W)= X(w) Han Youn X(w) ½ztjuk a) X (W) = 1 + jw Y(W)= X(w) H(W). I tjw z+jw tjw = 1+jw 2+jw y (+) = (e+ - e²+) 4(+) b) XIW): π (W) + |/|/w Y₁W) = [π √(W) + 1/w] =² + j w zxjw How = π √(w) 1 ㅠ беш) 24jw + *= II 8 (W) + 1 1 1 1 2 4 jw = 2 y(+)= \uct) - e²+us+] - SINAALINE ju 2+ jwarrow_forwardNO AI PLEASE SHOW WORKarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Compute the Laplace transform of the following time domain function using only L.T. properties: f(t)=(t-3)eu(t-2) The Laplace Transform of x(t) = 8(-1) - u(1) is X(s): = (a) 2πδ(s) (b) 1-1 S (c) j2πδ (s) (d) - 1/3 Sarrow_forwardUf you don't know, don't attempt this questions,no Ai or it's screen shot should be usedarrow_forwardFind the initial and final values of sequence x(n) from X(Z) below using the initial and final value properties X(Z) = = z-1arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,