EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
6th Edition
ISBN: 8220102801448
Author: Alexander
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 77P
The three-phase system of a town distributes power with a line voltage of 13.2 kV. A pole transformer connected to single wire and ground steps down the high-voltage w ire to 120 V rms and selves a house as shown in Fig. 13.139.
- (a) Calculate the turns ratio of the pole transformer to get 120 V.
- (b) Determine how much current a 100-W lamp connected to the 120-V hot line draws from the high-voltage line.
Figure 13.139
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 200-kVA transformer has an impedance of 15% and the power factor of the load is 85%. The primary voltage is 6,000 volts while the copper loss is 15 kW. Find the percentage voltage regulation.
Answer. 13.49%
Show solution
Q23. If DC voltage of 240 V is connected to the primary of a transformer having 1:10 turns ratio, then the voltage across the secondary winding will be.
13. Which of the following quantity is/ are change in substations?
a) Voltage
b) AC to DC
c) Frequency
d) all of the above
3
17
8
10
11
12
6
Chapter 13 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
Ch. 13.2 - Determine the voltage Vo in the circuit of Fig....Ch. 13.2 - Determine the phasor currents I1 and I2 in the...Ch. 13.3 - Prob. 3PPCh. 13.4 - Find the input impedance of the circuit in Fig....Ch. 13.4 - For the linear transformer in Fig. 13.26(a), find...Ch. 13.4 - Solve the problem in Example 13.1 (see Fig. 13.9)...Ch. 13.5 - The primary current to an ideal transformer rated...Ch. 13.5 - In the ideal transformer circuit of Fig. 13.38,...Ch. 13.5 - Find Vo in the circuit of Fig. 13.40. Figure 13.40...Ch. 13.6 - Refer to Fig. 13.43. If the two-winding...
Ch. 13.6 - In the autotransformer circuit of Fig. 13.45, find...Ch. 13.7 - Prob. 12PPCh. 13.8 - Prob. 13PPCh. 13.9 - Refer to Fig. 13.61. Calculate the turns ratio...Ch. 13.9 - Calculate the turns ratio of an ideal transformer...Ch. 13.9 - In Example 13.17, if the eight 100-W bulbs are...Ch. 13 - Refer to the two magnetically coupled coils of...Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - The ideal transformer in Fig. 13.70(a) has N2/N1 =...Ch. 13 - Prob. 6RQCh. 13 - A three-winding transformer is connected as...Ch. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - For the three coupled coils in Fig. 13.72,...Ch. 13 - Using Fig. 13.73, design a problem to help other...Ch. 13 - Two coils connected in series-aiding fashion have...Ch. 13 - (a) For the coupled coils in Fig. 13.74(a), show...Ch. 13 - Two coils are mutually coupled, with L1 = 50 mH,...Ch. 13 - Given the circuit shown in Fig. 13.75, determine...Ch. 13 - For the circuit in Fig. 13.76, find Vo. Figure...Ch. 13 - Find v(t) for the circuit in Fig. 13.77.Ch. 13 - Prob. 9PCh. 13 - Find vo in the circuit of Fig. 13.79. Figure 13.79...Ch. 13 - Use mesh analysis to find ix in Fig. 13.80, where...Ch. 13 - Determine the equivalent Leq in the circuit of...Ch. 13 - For the circuit in Fig. 13.82, determine the...Ch. 13 - Obtain the Thevenin equivalent circuit for the...Ch. 13 - Find the Norton equivalent for the circuit in Fig....Ch. 13 - Obtain the Norton equivalent at terminals a-b of...Ch. 13 - In the circuit of Fig. 13.86, ZL is a 15-mH...Ch. 13 - Find the Thevenin equivalent to the left of the...Ch. 13 - Determine an equivalent T-section that can be used...Ch. 13 - Determine currents I1, I2, and I3 in the circuit...Ch. 13 - Prob. 21PCh. 13 - Find current Io in the circuit of Fig. 13.91.Ch. 13 - Let is = 5 cos (100t) A. Calculate the voltage...Ch. 13 - In the circuit of Fig. 13.93, (a) find the...Ch. 13 - Prob. 25PCh. 13 - Find Io in the circuit of Fig. 13.95. Switch the...Ch. 13 - Find the average power delivered to the 50-...Ch. 13 - In the circuit of Fig. 13.97, find the value of X...Ch. 13 - Prob. 29PCh. 13 - (a) Find the input impedance of the circuit in...Ch. 13 - Using Fig. 13.100, design a problem to help other...Ch. 13 - Two linear transformers are cascaded as shown in...Ch. 13 - Determine the input impedance of the air-core...Ch. 13 - Using Fig. 13.103, design a problem to help other...Ch. 13 - Find currents I1, I2, and I3 in the circuit of...Ch. 13 - As done in Fig. 13.33, obtain the relationships...Ch. 13 - A 2402,400-V rms step-up ideal transformer...Ch. 13 - Design a problem to help other students better...Ch. 13 - A 1,200240-V rms transformer has impedance on the...Ch. 13 - The primary of an ideal transformer with a turns...Ch. 13 - Given I2 = 2 A, determine the value of Is in Fig....Ch. 13 - For the circuit in Fig. 13.107, determine the...Ch. 13 - Obtain V1 and V2 in the ideal transformer circuit...Ch. 13 - In the ideal transformer circuit of Fig. 13.109,...Ch. 13 - For the circuit in Fig. 13.110, find the value of...Ch. 13 - (a) Find I1 and I2 in the circuit of Fig. 13.111...Ch. 13 - Prob. 47PCh. 13 - Using Fig. 13.113, design a problem to help other...Ch. 13 - Find current ix in the ideal transformer circuit...Ch. 13 - Prob. 50PCh. 13 - Use the concept of reflected impedance to find the...Ch. 13 - For the circuit in Fig. 13.117, determine the...Ch. 13 - Refer to the network in Fig. 13.118. (a) Find n...Ch. 13 - A transformer is used to match an amplifier with...Ch. 13 - For the circuit in Fig. 13.120, calculate the...Ch. 13 - Find the power absorbed by the 100- resistor in...Ch. 13 - For the ideal transformer circuit of Fig. 13.122...Ch. 13 - Determine the average power absorbed by each...Ch. 13 - In the circuit of Fig. 13.124, let vs = 165...Ch. 13 - Refer to the circuit in Fig. 13.125 on the...Ch. 13 - For the circuit in Fig. 13.126, find Il, I2, and...Ch. 13 - For the network in Fig. 13.127, find: (a) the...Ch. 13 - Find the mesh currents in th circuit of Fig....Ch. 13 - For the circuit in Fig. 13.129. find the turns...Ch. 13 - Calculate the average power dissipated by the 20-...Ch. 13 - Design a problem to help other students better...Ch. 13 - An autotransformer with a 40 percent tap is...Ch. 13 - In the ideal autotransformer of Fig. 13.131,...Ch. 13 - In the circuit of Fig. 13.131, N1 = 190 turns and...Ch. 13 - In the ideal transformer circuit shown in Fig....Ch. 13 - When individuals travel, their electrical...Ch. 13 - In order to meet an emergency, three single-phase...Ch. 13 - Figure 13.135 on the next page shows a three-phase...Ch. 13 - Consider the three-phase transformer shown in Fig....Ch. 13 - A balanced three-phase transformer bank with the...Ch. 13 - Using Fig. 13.138, design a problem to help other...Ch. 13 - The three-phase system of a town distributes power...Ch. 13 - Use PSpice or MultiSim to determine the mesh...Ch. 13 - Use PSpice or MultiSim to find I1, I2, and I3 in...Ch. 13 - Prob. 80PCh. 13 - Use PSpice or MultiSim to find I1, I2, and I3 in...Ch. 13 - A stereo amplifier circuit with ail output...Ch. 13 - A transformer having 2,400 turns on the primary...Ch. 13 - A radio receiver has an input resistance of 300 ....Ch. 13 - A step-down power transformer with a turns ratio...Ch. 13 - A 240120-V rms power transformer is rated at 10...Ch. 13 - A 4-kVA, 2,400240-V rms transformer has 250 turns...Ch. 13 - A 25,000240-V rms distribution transformer has a...Ch. 13 - A 4,800-V rms transmission line feeds a...Ch. 13 - A four-winding transformer (Fig. 13.146) is often...Ch. 13 - A 440/110-V ideal transformer can be connected to...Ch. 13 - Ten bulbs in parallel are supplied by a 7,200120-V...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q36. A resistor with a current of 3 A through it converts 500 J of electrical energy to heat energy in 12 s. What is the voltage across the resistor? A. 13.84 B. 16.88 C. 16.84 D. 13.88arrow_forward- Laminated core Secondary winding Primary win ding Fig. 1. Two winding transformer. 1. What is a transformer ? How does įt transfer electric energy from one circuit to another ? 2. Explain the principle of operation of a transformer. 3. What is meant by transformer action ? Under what conditions will it take place ? 4. If an alternating current is impressed on one coil, what will be the frequency of the induced voltage in another coil with which it is coupled ? 5. Enumerate the various kinds of transformers. 6. Explain the need for stepping up and stepping down voltages in a power system. How does a transformer accomplish ? 7. Why are transformer windings divided into several coils? 8. What properties should a good transformer oil possess ? 9. What purposes are served by placing transformers in oil-filled tanks ? 10. Why are the tanks of some large transformers corrugated?arrow_forwarda 15 kVA closet transformer located inside a building is used to step down the voltage for the building. it is connected to a primary 9800V AC power source. The ratio of the number of primary windings to the number of secondary windings on the transformer is 60 to 15. what is the voltage provided to the building? what is the amount of current provided to the building? if the building consumes 3200W of power, what is it's power factor? what is the phase angle of the secondary power source in the building?arrow_forward
- The Subject is Basic Electrical Engineering Chapter 13. Effective Value of ACarrow_forwardYour aunt living in the USA sent an appliance that has impedance equal to 10 + j3 2 at 60 Hz. She instructed you to purchase a 220 V to 110 V transformer to step down the voltage since the appliance is rated 110 V. The cord that you used to connect the 220 V side of the transformer to the convenience outlet has a total impedance of 1 + j0.5 Q. You measured the voltage at the outlet and the value is 220 Vrms. The equivalent circuit is shown below: j0.5 Q 19 ww + (N) 220 V rms 10+ j3 VL Ω 220 V : 110 V Solve for the voltage across the appliance and the current through it by either A. Referring the appliance to the transformer primary, OR B. Referring the source and cord impedance to the transformer secondary. Assign the convenience outlet voltage as the reference phasor, i.e. at 0°. Choose only one method above. After choosing, 1. Draw the circuit that would solve for V₁ and T. Compute all referred values and label all components. 2. Solve for V and I.arrow_forwardYour aunt living in the USA sent an appliance that has impedance equal to 10+ j3 2 at 60 Hz. She instructed you to purchase a 220 V to 110 V transformer to step down the voltage since the appliance is rated 110 V. The cord that you used to connect the 220 V side of the transformer to the convenience outlet has a total impedance of 1 + j0.5 Q. You measured the voltage at the outlet and the value is 220 Vrms. The equivalent circuit is shown below: 1Ω mm ĪT + 10+j3 VL 220 V rms Ω 220 V : 110 V Solve for the voltage across the appliance and the current through it by either A. Referring the appliance to the transformer primary, OR B. Referring the source and cord impedance to the transformer secondary. Assign the convenience outlet voltage as the reference phasor, i.e. at 0°. Choose only one method above. After choosing, 1. Draw the circuit that would solve for V₁ and T. Compute all referred values and label all components. 2. Solve for V and I. j0.5 Q +arrow_forward
- Your aunt living in the USA sent an appliance that has impedance equal to 10 + j3 2 at 60 Hz. She instructed you to purchase a 220 V to 110 V transformer to step down the voltage since the appliance is rated 110 V. The cord that you used to connect the 220 V side of the transformer to the convenience outlet has a total impedance of 1 + j0.5 Q. You measured the voltage at the outlet and the value is 220 Vrms. The equivalent circuit is shown below: j0.5 Ω 1Ω mm N220 V rms 10 + j3 V₁ Ω 220 V 110 V Solve for the voltage across the appliance and the current through it by either A. Referring the appliance to the transformer primary, OR B. Referring the source and cord impedance to the transformer secondary. Assign the convenience outlet voltage as the reference phasor, i.e. at 0°. Choose only one method above. After choosing, 1. Draw the circuit that would solve for V₁ and I. Compute all referred values and label all components. 2. Solve for V₁ and I₁. S + Iarrow_forward3. A transformer has an input current and voltage of 5A and 11kV respectively. If the efficiency of the transformer is 93.5 %, what is the current in the load if the voltage is 240V?arrow_forward21. The following figures were obtained from tests on a 30-kVA, 3000/110-V transformer : O.C. test: 3000 V Calculate the efficiency of the transformer at: (a) full-load, 0.8 p.f. (b) half-load, unity p.f. Also, calculate the kVA output at which the efficiency is maximum. 0.3 A 350 W; S.C. test: 150 V 10 A 500 W [96.56%; 97%; 25.1 kVA]arrow_forward
- Problem 3: A 60 Hz, 13.5kV/240V, single-phase ideal transformer is used to step-down the voltage of a distribution system. If the low-voltage side of the transformer is to be kept at a constant magnitude of V₂ - 240 V determine the following quantities: a) the value of the load I impedance (connected to the low-voltage side) that will cause the transformer to be fully loaded; b) the value of the load impedance found in a) referred to the high-voltage side of the transformer; c) the value of the load current referred to the low-voltage side of the transformer; and d) the value of the load current referred to the high-voltage side of the transformer.arrow_forwardA 15 kVa closet transformer located inside a building is used to step down the voltage for the building. It is connected to a primary 9800 V AC power source. The ratio of the number of primary windings to the number of secondary windings on the transformer is 60 to 15. a. What is the voltage and amount of current provided to the building? c. If the building consumes 3200W of power, what is its power factor? d. What is the phase angle of the secondary power source in the building?arrow_forwardA 15 KVA closet transformer located inside a building is used to step down the voltage for the building. It is connected to a primary 1800 V AC power source . The ratio of the number of primary windings to the number of secondary windings on the transformer is 60 to 15. a. What is the voltage provided to the building? b. What is the amount of current provided to the building? c. If the building consumes 3200W of power, what is it's power facctor? d. What is the phase angle of the secondary power source in the building?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Mesh Current Problems in Circuit Analysis - Electrical Circuits Crash Course - Beginners Electronics; Author: Math and Science;https://www.youtube.com/watch?v=DYg8B-ElK0s;License: Standard Youtube License