Concept explainers
he following demonstration takes place in a two-step process:
rst, solid calcium carbide
Write the balanced equations for each reaction that is occurring, including all phases.
If a
Now imagine that the final gases produced are collected in a large bulkier and allowed to cool to room temperature. Using the information from part b (
(a)
Interpretation:
The balance chemical equation for the combustion of ethyne and reaction of calcium carbide to produce ethyne.
Concept Introduction:
When the number of atoms of an element on the product side and on the reactant side is equal then such reaction is said to be a balanced chemical equation.
Answer to Problem 140AP
The balanced chemical reaction is given as:
Explanation of Solution
The balance equation indicates that all the number of same atoms must be equal at both sides. Hence we have to write the reactants and products of the reaction and balance each atom at both sides.
In this reaction equation, number of C and Ca is balanced at both sides. Hence we have to balance H and O. To balance H; add 2 as coefficient with H2 O that changes the equation as;
Now O and H both are balanced hence it is a balance equation.
Similarly in second reaction equation;
Let’s balance Carbon at both sides;
Now we have to balance H and O at both sides. To balance O, add 5 as coefficient with O2 and 2 as coefficient with H2 O.
(b)
Interpretation:
Identify the limiting reactant if 100.0- g sample of calcium carbide is initially reacted with 50.0 g of water.
Concept Introduction:
The reactant that forms less amount of product is called as limiting reagent and which limits the reaction and determine the amount of product formed.
Answer to Problem 140AP
Water forms less amount of ethyne so water is limiting reagent.
Explanation of Solution
Molar mass of CaC2 = 64.09 g/mol
Molar mass of H2 O = 18.0 g/mol
Mass of CaC2 = 100 g
Mass of H2 O = 50.0 g
Number of moles of CaC2 =
Number of moles of water =
According to balance chemical equation, 1 mole of ethyne is formed by 2 moles of H2 O and 1 mole of ethyne is formed by 1 mole of calcium carbide.
Hence, H2 O forms less amount of ethyne so water is limiting reagent.
(c)
Interpretation:
The volume of carbon dioxide gas which is produced in the balloon at a pressure of 1.00 atm and 25° C.
Concept Introduction:
The ideal gas equation is given by:
PV = nRT
Where, P = pressure
V = volume
n = number of moles
T = temperature
R = gas constant
By knowing the value of pressure, temperature and number of moles, one can identify the value of volume.
Answer to Problem 140AP
Volume of carbon dioxide produced is 68.01 L.
Explanation of Solution
Given information:
- P = 1 atm.
- T = 25 °C = 25+373 = 298 K.
- n = 2.78 moles (from part b).
- R = 0.0821 L.atm / k.mol.
The given reaction is
Put the given values in ideal gas equation.
PV = nRT
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- this is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forwardShow work. don't give Ai generated solution and don't copy answer anywherearrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardA buffered solution containing dissolved aniline, CH,NH2, and aniline hydrochloride, CH, NH, Cl, has a pH of 5.41. Determine the concentration of CH, NH in the solution if the concentration of CH, NH, is 0.305 M. The pK of aniline is 9.13. [CHẠNH] = Calculate the change in pH of the solution, ApH, if 0.375 g NaOH is added to the buffer for a final volume of 1.40 L. Assume that any contribution of NaOH to the volume is negligible. ApH = Marrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Nuclear spin energy levels and electron spin energy levels.arrow_forward1. Polyester Formation a. Draw the structure of the polyester formed (Seabacoyl Chloride + Ethylene Glycol). (Insert scanned hand-drawn structure or ChemDraw image.) b. What molecules are eliminated in this condensation reaction?arrow_forwardDon't used Ai solutionarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning