Concept explainers
Determine the identity of the gas.
Assuming the
ovide values for each of the following variables. In addition, explain what is happening for each variable, incorporating the kinetic molecular theory into your explanation.
m>Temperature of gas mixture = ?K
m>Total moles of gas mixture = ?mol
m>Total pressure of gas mixture = ?atm
m>Volume of balloon = ?L
Now assuming the
ovide values for each of the following variables. In addition, explain what is happening for each variable, incorporating the kinetic molecular theory into your explanation.
m>Temperature of gas mixture = ?K
m>Total moles of gas mixture = ?mol
m>Total pressure of gas mixture = ?atm
m>Volume of rigid container = ? L
(a)
Interpretation:
To determine the identity of the gas based on the pressure, volume and temperature given.
Concept Introduction:
The ideal gas equation is:
Where,
P = Pressure of the gas
V = Volume of the gas
n = moles of the gas
R = Universal gas constant
T = Temperature of the gas.
Answer to Problem 118AP
The monatomic gas is Argon.
Explanation of Solution
The ideal gas equation is
Where,
P = Pressure of the gas = 1.00 atm
V = Volume of the gas = 2.50 L
n = moles of the gas = ?
R = Universal gas constant = 0.0821 L.atm/mol.K
T = Temperature of the gas = -48 ° C = 225 K
Substituting the values in the given equation, we get,
Thus, the moles of the gas = 0.135 mol
From the moles of the gas, one can find the molar mass of the gas thereby identity of the gas.
The monatomic gas with this molecular weight is Argon.
(b)
Interpretation:
To determine the values of different variables when another gas is added to the elastic balloon which already has a monatomic gas in it.
Concept Introduction:
The ideal gas equation is:
Where,
P = Pressure of the gas
V = Volume of the gas
n = moles of the gas
R = Universal gas constant
T = Temperature of the gas.
Answer to Problem 118AP
Temperature of gas mixture = 225 K
Total moles of gas mixture = 0.447 mol
Total pressure of gas mixture = 1 atm
Volume of balloon = 8.26 L.
Explanation of Solution
Given, 10.0 g of oxygen is added.
Moles of oxygen are to be found.
Moles of oxygen = 0.3125 mol
Moles of monatomic gas = 0.135 mol
Total number of moles = 0.3125 mol + 0.135 mol = 0.447 mol
Air inside the balloon and atmospheric air pressure has very small pressure difference.
Therefore, one can consider it same and assume here that pressure of air inside balloon is equal to atmospheric pressure that is 1 atm.
Since, there is no change in temperature so, the temperature of the mixture is 225 K.
Total volume of gas mixture is found using ideal gas equation.
Thus,
Temperature of gas mixture = 225 K
Total moles of gas mixture = 0.447 mol
Total pressure of gas mixture = 1 atm
Volume of balloon = 8.26 L.
(c)
Interpretation:
To determine the values of different variables when another gas is added to the rigid steel container this already has a monatomic gas in it.
Concept Introduction:
The ideal gas equation is:
Where,
P = Pressure of the gas
V = Volume of the gas
n = moles of the gas
R = Universal gas constant
T = Temperature of the gas.
Answer to Problem 118AP
Temperature of gas mixture = 225 K
Total moles of gas mixture = 0.447 mol
Total pressure of gas mixture = 3.303 atm
Volume of rigid container = 2.5 L.
Explanation of Solution
Given, 10.0 g of oxygen is added.
Moles of oxygen are to be found.
Moles of oxygen = 0.3125 mol
Moles of monatomic gas = 0.135 mol
Total number of moles = 0.3125 mol + 0.135 mol = 0.447 mol
Since, there is no change in temperature so, the temperature of the mixture is 225 K.
Since, the given container is rigid so, the volume of the mixture is 2.50 L.
Total pressure of gas mixture is found using ideal gas equation.
Thus,
Temperature of gas mixture = 225 K
Total moles of gas mixture = 0.447 mol
Total pressure of gas mixture = 3.303 atm
Volume of rigid container = 2.5 L.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- Please correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forward
- Five chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning