The isomerization of cyclopropane, C3H6, is believed to occur by the mechanism shown in the following equations:
Here
Trending nowThis is a popular solution!
Chapter 13 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Assuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardFor the past 10 years, the unsaturated hydrocarbon 1, 3-butadiene (CH2 = CH - CH = CH2) has ranked 38th among the top 50 industrial Chemicals. It is used primarily for the manufacture of synthetic rubber. An isomer exists also as cyclobutene: The isomerization of cyclobutene to butadiene is first-order and the rate constant has been measured as 2.0104s1 at 150 C in a 0.53-L ?ask. Determine the partial pressure of cyclobutene and its concentration after 30.0 minutes if an isomerization reaction is carried out at 150 C with an initial pressure of 55 torr.arrow_forward
- Distinguish between the differential rate law and the integrated rate law. Which of these is often called just the rate law? What is k in a rate law, and what are orders in a rate law? Explain.arrow_forwardThe reaction of NO2(g) and CO(g) is thought to occur in two steps to give NO and CO2: Step 1: Slow NO2(g) + NO2(g) NO(g) + NO3(g) Step 2: Fast NO3(g) + CO(g) NO2(g) + CO2(g) (a) Show that the elementary steps add up to give the overall, stoichiometric equation. (b) What is the molecularity of each step? (c) For this mechanism to be consistent with kinetic data, what must be the experimental rate equation? (d) Identify any intermediates in tins reaction.arrow_forwardNitramide, NO2NH2, decomposes slowly in aqueous solution according to the following reaction: NO2NH2(aq) N2O(g) + H2O() The reaction follows the experimental rate law Rate=k[NO2NH2][H3O+] (a) What is the apparent order of the reaction in a pH buffered solution? (In a pH buffered solution, the concentration of H3O+ is a constant.) (b) Which of the following mechanisms is the most appropriate for the interpretation of this rate law? Explain. (Note that when writing the expression for K, the equilibrium constant, [H2O] is not involved. See Chapter 15.) Mechanism 1 NO2NH2K1N2O+H2O Mechanism 2 NO2NH2+H3O+k2k2NO2NH3++H2O(rapidequilibrium) NO2NH3+k3N2O+H3O+(rate-limitingstep) Mechanism 3 NO2NH2+H2Ok4k4NO2NH+H3O+(rapidequilibrium)NO2NHk5N2O+OH(rate-limitingstep)H3O++OHk62H2O(veryfastreaction) (c) Show the relationship between the experimentally observed rate constant, k, and the rate constants in the selected mechanism. (d) Based on the experimental rate law, will the reaction rate increase or decrease if the pH of the solution is increased?arrow_forward
- Urea, (NH2)2CO, can be prepared by heating ammonium cyanate, NH4OCN. NH4OCN(NH2)2CO This reaction may occur by the following mechanism: NH4++OCNkk1NH3+HOCN(fast,equilibrium)NH3+HOCNk1(NH2)2CO(slow) What is the rate law predicted by this mechanism?arrow_forwardно HO HO HO 0 + ½ O, → + H,0 H H но OH ascorbic acid dehydroascorbic acid Vitamin C is oxidized slowly to dehydroascorbic acid by the oxygen in air. It is catalyzed by ions such as Cu*2 and Fe*3. The reaction can be followed by measuring the ultraviolet absorbance at 243 nm. Time (hours) Absorbance (A) 1/A In A - In A 0.75 1.3 -0.29 0.29 1 0.38 2.6 -0.97 0.97 2 0.19 5.3 - 1.7 1.7 3 0.095 11 - 2.4 2.4 29. What is the hybridization of carbon 1 (far left) and carbon 2 (middle) in this hydrocarbon: CH3CH=CH2? (A) sp³, sp (B) sp?, sp? (C) sp³, sp? (D) sp, sp?arrow_forward4arrow_forward
- 9) The following three-step mechanism has been proposed for the reaction of chlorine and chloroform. rate constants 1) Cl2(g) ↔ 2 Cl(g) Keq1 =2.5 k1 = 5.5 x 103 sec-1 2) Cl(g) + CHCl3(g) → HCl(g) + CCl3(g) k2 = 2.4 x 10−2 M-1sec-1 3) CCl3(g) + Cl(g) → CCl4(g) k3 = 3.6 x 102 M-1sec-1 a) Write the equation for the overall reaction. __a__ b) Write the rate law for the overall reaction. __b__ c) Calculate the rate constant for the overall reaction (include units) __c__arrow_forwardComplete the table below by selecting the correct functional group from the given alternatives- 2) i) (Alkene, alkyne, aldehyde, amide, ketone, amine, alcohol, Carboxylic acid) Functional group SI. No Compound 1 CH3 H H H-C=C-C CH H H NH2 3 ii) Give reasons why the rate of a reaction increases when the volume they occupy is decreased. [2] 3) i)arrow_forwardно HO HO HO 0 + ½ O, → + H,0 H H но он ascorbic acid dehydroascorbic acid Vitamin C is oxidized slowly to dehydroascorbic acid by the oxygen in air. It is catalyzed by ions such as Cu*2 and Fe*3. The reaction can be followed by measuring the ultraviolet absorbance at 243 nm. Time (hours) Absorbance (A) 1/A In A - In A 0.75 1.3 -0.29 0.29 1 0,38 2.6 -0.97 0.97 2 0.19 5.3 - 1.7 1.7 3 0.095 11 - 2.4 2.4 28. A new compound is synthesized and found to be a monoprotic acid with a molar mass of 248 g/mole. When 0.0050 moles of this acid are dissolved in 0.500L of water, the pH is measured as 2.94. What is the pKa of this acid? (A) (B) (C) (D) 2.33 3.89 5.78 7.78 29. What is the hybridization of carbon 1 (far left) and carbon 2 (middle) in this hydrocarbon: CH3CH=CH2? (A) sp³, sp (B) sp?, sp? (C) sp³, sp? (D) sp, sp?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning