OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305673939
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 13.114QP
Interpretation Introduction
Interpretation:
The activation energy, frequency factor and rate constant at
Concept Introduction:
Arrhenius equation:
Arrhenius equation is used to calculate the rate constant of many reactions. Arrhenius equation takes the form
Where,
k=rate constant
A=frequency factor
e=base of logarithms
T=Temperature
Mathematically, the above equation can be written as,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Ch. 13.1 - For the reaction given in Example 13.1, how is the...Ch. 13.1 - Iodide ion is oxidized by hypochlorite ion in...Ch. 13.1 - Shown here is a plot of the concentration of a...Ch. 13.3 - Prob. 13.3ECh. 13.3 - Prob. 13.2CCCh. 13.3 - Prob. 13.4ECh. 13.3 - Prob. 13.3CCCh. 13.4 - a. What would be the concentration of dinitrogen...Ch. 13.4 - The isomerization of cyclopropane, C3H6, to...Ch. 13.4 - A reaction believed to be either first or second...
Ch. 13.5 - Consider the following potential-energy curves for...Ch. 13.6 - Acetaldehyde, CH3CHO, decomposes when heated....Ch. 13.7 - Prob. 13.8ECh. 13.7 - Prob. 13.9ECh. 13.7 - Prob. 13.10ECh. 13.8 - The iodide-ion-catalyzed decomposition of hydrogen...Ch. 13.8 - Prob. 13.12ECh. 13.8 - Prob. 13.6CCCh. 13 - List the four variables or factors that can affect...Ch. 13 - Define the rate of reaction of HBr in the...Ch. 13 - Give at least two physical properties that might...Ch. 13 - A rate of reaction depends on four variables...Ch. 13 - Prob. 13.5QPCh. 13 - The reaction...Ch. 13 - The rate of a reaction is quadrupled when the...Ch. 13 - Prob. 13.8QPCh. 13 - The reaction A(g)B(g)+C(g) is known to be first...Ch. 13 - Prob. 13.10QPCh. 13 - Prob. 13.11QPCh. 13 - Sketch a potential-energy diagram for the...Ch. 13 - Draw a structural formula for the activated...Ch. 13 - Prob. 13.14QPCh. 13 - Prob. 13.15QPCh. 13 - Prob. 13.16QPCh. 13 - Prob. 13.17QPCh. 13 - Prob. 13.18QPCh. 13 - The dissociation of N2O4 into NO2, N2O4(g)2NO2(g)...Ch. 13 - Prob. 13.20QPCh. 13 - Prob. 13.21QPCh. 13 - Prob. 13.22QPCh. 13 - You are running the reaction 2A+BC+3D. Your lab...Ch. 13 - At a constant temperature, which of the following...Ch. 13 - Consider the reaction E+FG+H, which has the...Ch. 13 - The hypothetical reaction A+B+CD+E has the rate...Ch. 13 - Kinetics I Consider the hypothetical reaction A(g)...Ch. 13 - Kinetics II You and a friend are working together...Ch. 13 - Consider the reaction 3A2B+C. a One rate...Ch. 13 - Given the reaction 2A+BC+3D, can you write the...Ch. 13 - The reaction 2A(g)A2(g) is being run in each of...Ch. 13 - Prob. 13.32QPCh. 13 - You perform some experiments for the reaction AB+C...Ch. 13 - A friend of yours runs a reaction and generates...Ch. 13 - Prob. 13.35QPCh. 13 - You carry out the following reaction by...Ch. 13 - Prob. 13.37QPCh. 13 - The chemical reaction AB+C has a rate constant...Ch. 13 - Relate the rate of decomposition of NH4NO2 to the...Ch. 13 - For the reaction of hydrogen with iodine...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - To obtain the rate of the reaction...Ch. 13 - Ammonium nitrite, NH4NO2, decomposes in solution,...Ch. 13 - Iron(III) chloride is reduced by tin(II) chloride....Ch. 13 - Azomethane, CH3NNCH3, decomposes according to the...Ch. 13 - Nitrogen dioxide, NO2, decomposes upon heating to...Ch. 13 - Hydrogen sulfide is oxidized by chlorine in...Ch. 13 - For the reaction of nitrogen monoxide, NO, with...Ch. 13 - Prob. 13.49QPCh. 13 - Prob. 13.50QPCh. 13 - In experiments on the decomposition of azomethane....Ch. 13 - Ethylene oxide. C2H4O, decomposes when heated to...Ch. 13 - Nitrogen monoxide NO, reacts with hydrogen to give...Ch. 13 - In a kinetic study of the reaction...Ch. 13 - Chlorine dioxide, ClO2, is a reddish-yellow gas...Ch. 13 - Iodide ion is oxidized to hypoiodite ion, IO, by...Ch. 13 - Sulfuryl chloride, SO2Cl2, decomposes when heated....Ch. 13 - Cyclopropane, C3H6, is converted to its isomer...Ch. 13 - A reaction of the form aA Products is second-order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - Ethyl chloride, CH3CH2Cl, used to produce...Ch. 13 - Cyclobutane, C4H8, consisting of molecules in...Ch. 13 - Methyl isocyanide, CH3NC, isomerizes, when heated,...Ch. 13 - Dinitrogen pentoxide, N2O5, decomposes when heated...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - A reaction of the form aA Products is second order...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - In the presence of excess thiocyanate ion, SCN,...Ch. 13 - It is found that a gas undergoes a zero-order...Ch. 13 - The reaction AB+C is found to be zero order. If it...Ch. 13 - Chlorine dioxide oxidizes iodide ion in aqueous...Ch. 13 - Methyl acetate, CH3COOCH3, reacts in basic...Ch. 13 - Sketch a potential-energy diagram for the reaction...Ch. 13 - Sketch a potential-energy diagram for the...Ch. 13 - In a series of experiments on the decomposition of...Ch. 13 - The reaction 2NOCl(g)2NO(g)+Cl2(g) has...Ch. 13 - The rate of a particular reaction increases by a...Ch. 13 - The rate of a particular reaction quadruples when...Ch. 13 - The following values of the rate constant were...Ch. 13 - The following values of the rate constant were...Ch. 13 - Nitrogen monoxide, NO, is believed to react with...Ch. 13 - The decomposition of ozone is believed to occur in...Ch. 13 - Identify the molecularity of each of the following...Ch. 13 - Prob. 13.86QPCh. 13 - Write a rate equation, showing the dependence of...Ch. 13 - Prob. 13.88QPCh. 13 - The isomerization of cyclopropane, C3H6, is...Ch. 13 - The thermal decomposition of nitryl chloride,...Ch. 13 - The reaction H2(g)+I2(g)2HI(g) may occur by the...Ch. 13 - Ozone decomposes to oxygen gas. 2O3(g)3O2(g) A...Ch. 13 - The following is a possible mechanism for a...Ch. 13 - Consider the following mechanism for a reaction in...Ch. 13 - A study of the decomposition of azomethane,...Ch. 13 - Nitrogen dioxide decomposes when heated....Ch. 13 - Prob. 13.97QPCh. 13 - Prob. 13.98QPCh. 13 - Methyl acetate reacts in acidic solution....Ch. 13 - Benzene diazonium chloride, C6H5NNCl, decomposes...Ch. 13 - What is the half-life of methyl acetate hydrolysis...Ch. 13 - What is the half-life of benzene diazonium...Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - A compound decomposes by a first-order reaction....Ch. 13 - Butadiene can undergo the following reaction to...Ch. 13 - Prob. 13.106QPCh. 13 - Prob. 13.107QPCh. 13 - A second-order decomposition reaction run at 550oC...Ch. 13 - Prob. 13.109QPCh. 13 - Prob. 13.110QPCh. 13 - Prob. 13.111QPCh. 13 - Prob. 13.112QPCh. 13 - The decomposition of nitrogen dioxide,...Ch. 13 - Prob. 13.114QPCh. 13 - Prob. 13.115QPCh. 13 - Prob. 13.116QPCh. 13 - Nitryl bromide, NO2Br, decomposes into nitrogen...Ch. 13 - Tertiary butyl chloride reacts in basic solution...Ch. 13 - Urea, (NH2)2CO, can be prepared by heating...Ch. 13 - Prob. 13.120QPCh. 13 - A study of the gas-phase oxidation of nitrogen...Ch. 13 - The reaction of water with CH3Cl in acetone as a...Ch. 13 - The reaction of thioacelamidc with water is shown...Ch. 13 - Prob. 13.124QPCh. 13 - Prob. 13.125QPCh. 13 - Prob. 13.126QPCh. 13 - Prob. 13.127QPCh. 13 - Prob. 13.128QPCh. 13 - Prob. 13.129QPCh. 13 - Prob. 13.130QPCh. 13 - The rate constant for a certain reaction is 1.4 ...Ch. 13 - The decomposition of hydrogen peroxide is a first...Ch. 13 - Prob. 13.133QPCh. 13 - What is the rate law for the following gas-phase...Ch. 13 - A possible mechanism for a gas-phase reaction is...Ch. 13 - Say you run the following elementary, termolecular...Ch. 13 - Prob. 13.137QPCh. 13 - For the decomposition of one mole of nitrosyl...Ch. 13 - Given the following mechanism for a chemical...Ch. 13 - The following data were collected for the reaction...Ch. 13 - A hypothetical reaction has the two-step mechanism...Ch. 13 - Prob. 13.142QPCh. 13 - Prob. 13.143QPCh. 13 - Prob. 13.144QPCh. 13 - Dinitrogen pentoxide decomposes according to the...Ch. 13 - Prob. 13.146QPCh. 13 - Dinitrogen pentoxide, N2O5, undergoes first-order...Ch. 13 - Prob. 13.148QPCh. 13 - Hydrogen peroxide in aqueous solution decomposes...Ch. 13 - Nitrogen dioxide reacts with carbon monoxide by...Ch. 13 - Nitrogen monoxide reacts with oxygen to give...Ch. 13 - Nitrogen monoxide reacts with hydrogen as follows:...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- At 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardAs with any drug, aspirin (acetylsalicylic acid) must remain in the bloodstream long enough to be effective. Assume that the removal of aspirin from the bloodstream into the urine is a lirst-order reaction, with a half-life of about 3 hours. The instructions on an aspirin bottle say to take 1 or 2 tablets every 4 hours. If a person takes 2 aspirin tablets, how much aspirin remains in the bloodstream when it is time for the second dose? (A standard tablet contains 325 mg of aspirin.)arrow_forward
- The initial concentration of the reactant in a tirst-order reaction A —» products is 0.64 rnol/L and the half-life is 30.0 s. Calculate the concentration of the reactant exactly 60 s after initiation of the reaction. How long would it take for the concentration of the reactant to drop to one-eighth its initial value? How long would it take for the concentration of the reactant to drop to 0.040 mol/L?arrow_forwardMethyl acetate, CH3COOCH3, reacts in basic solution to give acetate ion, CH3COO, and methanol, CH3OH. CH3COOCH3(aq)+OH(aq)CH3COO(aq)+CH3OH(aq) The overall order of the reaction was determined by starting with methyl acetate and hydroxide ion at the same concentrations, so [CH3COOCH3] = [OH] = x. Then Rate=k[CH3COOCH3]m[OH]n=kxm+n Determine the overall order and the value of the rate constant by plotting the following data assuming first- and then second-order kinetics. Time (min) [CH3COOCH3] (mol/L) 0.00 0.01000 3.00 0.00740 4.00 0.00683 5.00 0.00634 10.00 0.00463 20.00 0.00304 30.00 0.00224arrow_forwardKinetics II You and a friend are working together in order to obtain as much kinetic information as possible about the reaction A(g)B(g)+C(g). One thing you know before performing the experiments is that the reaction is zero order, first order, or second order with respect to A. Your friend goes off, runs the experiment, and brings back the following graph. a After studying the curve of the graph, she declares that the reaction is second order, with a corresponding rate law of Rate = k[A]2. Judging solely on the basis of the information presented in this plot, is she correct in her statement that the reaction must be second order? Here are some data collected from her experiment: Time (s) [A] 0.0 1.0 1.0 0.14 3.0 2.5 103 5.0 4.5 105 7.0 8.3 107 b The half-life of the reaction is 0.35 s. Do these data support the reaction being second order, or is it something else? Try to reach a conclusive answer without graphing the data. c What is the rate constant for the reaction? d The mechanism for this reaction is found to be a two-step process, with intermediates X and Y. The first step of the reaction is the rate-determining step. Write a possible mechanism for the reaction. e You perform additional experiments and find that the rate constant doubles in value when you increase the temperature by 10oC. Your lab partner doesnt understand why the rate constant changes in this manner. What could you say to your partner to help her understand? Feel free to use figures and pictures as part of your explanation.arrow_forward
- The following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardHydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forwardIsomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forward
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardIn Exercise 11.39, if the initial concentration of N2Oj is 0.100 .\1. how long will it take for the concentration to drop to 0.0100 times its original value? The decomposition of N2O5 in solution in carbon tetrachloride is a first-order reaction: 2N2O5—»4NO2 + O2 The rate constant at a given temperature is found to be 5.25 X 10-4 s-’. If the initial concentration of N2O5 is 0.200 M, what is its concentration after exactly 10 minutes have passed?arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY