The concentration of NO 2 after 2 .5×10 2 sec and half-life period has to be calculated. Concept introduction: Integrated rate law for second order reactions: Taking in the example of following reaction, aA → products And the reaction follows second order rate law, Then the relationship between the concentration of A and time can be mathematically expressed as, 1 [ A ] t = kt+ 1 [ A ] 0 The above expression is called as integrated rate for second order reactions. Half life for second order reactions: In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A). The half-life of second order reaction can be calculated using the equation, t 1/2 = 1 (k [ A ] 0 ) Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
The concentration of NO 2 after 2 .5×10 2 sec and half-life period has to be calculated. Concept introduction: Integrated rate law for second order reactions: Taking in the example of following reaction, aA → products And the reaction follows second order rate law, Then the relationship between the concentration of A and time can be mathematically expressed as, 1 [ A ] t = kt+ 1 [ A ] 0 The above expression is called as integrated rate for second order reactions. Half life for second order reactions: In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A). The half-life of second order reaction can be calculated using the equation, t 1/2 = 1 (k [ A ] 0 ) Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
The concentration of NO2 after 2.5×102sec = 4.7×10-3M.
To calculate the half life of the reaction
The half-life of second order reaction can be calculated using the equation,
t1/2=1(k[A]0)
Given,
Concentration of NO2(A)=0.050M
Rate constant = 0.775L/(mol.s)
Then, the half life period is calculated as,
t1/2=1(0.755L(mol.s))(0.050mol/L)t1/2=25.80=26s
The half-life period of the reaction = 26s.
Conclusion
The concentration of NO2 after 2.5×102sec and half-life period was calculated using the integrated law and half-life period for second order reactions and were found to be 4.7×10-3M and 26s.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Synthesis of Ibuprofen-Part 2:
1. Some pain relievers including ibuprofen (MotrinⓇ) and naproxen (Aleve®) are "α-arylpropanoic acids." Look up the structure
of naproxen (AleveⓇ), another a-arylpropionic acid. Using the same reactions that we used for making ibuprofen, show how
to make naproxen from the compound below. Show all intermediates and reagents in your synthesis.
Show how you would prepare ibuprofen starting from p-isobutylbenzene rather than p-isobutylacetophenenone. What reaction
steps would need to change/add?
3. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What
other impurities are present in your product and how do you know?
Acid Catalyzed Aromatization of Carvone:
1. Starting with the ketone, below, draw a mechanism for the reaction to give the phenol as shown.
H2SO4
HO-
H₂O
2. Why do we use CDCl instead of CHCl, for acquiring our NMR spectra?
3. Why does it not matter which enantiomer of carvone is used for this reaction?
What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material?
What other impurities are present in your product and how do you know?
Assign this H NMR
Chapter 13 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell