CHEMISTRY: MOLECULAR...(LLF) W/CONNECT
CHEMISTRY: MOLECULAR...(LLF) W/CONNECT
9th Edition
ISBN: 9781264547463
Author: SILBERBERG
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.88P

(a)

Interpretation Introduction

Interpretation:

Whether hydrogen chloride is a strong, weak or non-electrolyte is to be determined.

Concept introduction:

The electrolyte is the substance that produces ions when it is dissolved in a polar solvent. It breaks into positively and negatively charged ions that spread uniformly through the solvent. The electrolytic solution, as a whole, is electrically neutral. Sodium chloride, potassium chloride, calcium phosphate are some of the examples of electrolytes.

Strong electrolytes are those electrolytes that completely dissociates into its ions. These have a very high value of electrical conductance. Sodium chloride and potassium chloride are strong electrolytes.

Weak electrolytes are those electrolytes that partially dissociates into its ions. They are poor conductors of electricity. Acetic acid and carbonic acid are weak electrolytes.

Non-electrolytes are the substances that don’t dissociate into ions when they are dissolved in any solvent. They don’t conduct electricity. Urea, benzene, chloroform are non-electrolytes.

(b)

Interpretation Introduction

Interpretation:

Whether potassium nitrate is a strong, weak or non-electrolyte is to be determined.

Concept introduction:

The electrolyte is the substance that produces ions when it is dissolved in a polar solvent. It breaks into positively and negatively charged ions that spread uniformly through the solvent. The electrolytic solution, as a whole, is electrically neutral. Sodium chloride, potassium chloride, calcium phosphate are some of the examples of electrolytes.

Strong electrolytes are those electrolytes that completely dissociates into its ions. These have a very high value of electrical conductance. Sodium chloride and potassium chloride are strong electrolytes.

Weak electrolytes are those electrolytes that partially dissociates into its ions. They are poor conductors of electricity. Acetic acid and carbonic acid are weak electrolytes.

Non-electrolytes are the substances that don’t dissociate into ions when they are dissolved in any solvent. They don’t conduct electricity. Urea, benzene, chloroform are non-electrolytes.

(c)

Interpretation Introduction

Interpretation:

Whether glucose is a strong, weak or non-electrolyte is to be determined.

Concept introduction:

The electrolyte is the substance that produces ions when it is dissolved in a polar solvent. It breaks into positively and negatively charged ions that spread uniformly through the solvent. The electrolytic solution, as a whole, is electrically neutral. Sodium chloride, potassium chloride, calcium phosphate are some of the examples of electrolytes.

Strong electrolytes are those electrolytes that completely dissociates into its ions. These have a very high value of electrical conductance. Sodium chloride and potassium chloride are strong electrolytes.

Weak electrolytes are those electrolytes that partially dissociates into its ions. They are poor conductors of electricity. Acetic acid and carbonic acid are weak electrolytes.

Non-electrolytes are the substances that don’t dissociate into ions when they are dissolved in any solvent. They don’t conduct electricity. Urea, benzene, chloroform are non-electrolytes.

(d)

Interpretation Introduction

Interpretation:

Whether ammonia is a strong, weak or non-electrolyte is to be determined.

Concept introduction:

The electrolyte is the substance that produces ions when it is dissolved in a polar solvent. It breaks into positively and negatively charged ions that spread uniformly through the solvent. The electrolytic solution, as a whole, is electrically neutral. Sodium chloride, potassium chloride, calcium phosphate are some of the examples of electrolytes.

Strong electrolytes are those electrolytes that completely dissociates into its ions. These have a very high value of electrical conductance. Sodium chloride and potassium chloride are strong electrolytes.

Weak electrolytes are those electrolytes that partially dissociates into its ions. They are poor conductors of electricity. Acetic acid and carbonic acid are weak electrolytes.

Non-electrolytes are the substances that don’t dissociate into ions when they are dissolved in any solvent. They don’t conduct electricity. Urea, benzene, chloroform are non-electrolytes.

Blurred answer
Students have asked these similar questions
Explain the similarities and differences between a voltaic andelectrolytic cell. Be sure to discuss how electrical energy and chemical energy areexchanged in a redox reaction. What results did this experiment end up with whether this lab was successful or not of the electrochemistry redox reaction (Oxidation Reduction) experiment? The results: Part 1: Percent Error Calculation for Voltaic Cells To calculate the percent error, use the formula: Percent Error=Theoretical Value∣Observed Value−Theoretical Value∣​×100 Theoretical Voltages for Voltaic Cells To calculate the percent error, we first need the theoretical standard electrode potentials for the voltaic cells:   Zn/Cu: EZn2+/Zn = −0.76 V ECu2+/Cu = +0.34 V Theoretical: Ecell =0.34−(−0.76) = 1.10 V   Zn/Al: EAl3+/Al = −1.66 V Theoretical: Ecell = −1.66−(−0.76) = −0.90 V   Zn/Ag: EAg+/Ag = +0.80 V Theoretical: Ecell = 0.80−(−0.76) = 1.56 V   Al/Cu: Theoretical: Ecell = 0.34−(−1.66) = 2.00 V Ag/Cu: Theoretical: Ecell = 0.34−0.80 =…
1) List ALL the chemicals you are going to use or encounter for electrochemistry redox reaction (Oxidation Reduction) experiment. If you are working with any materials that have specific hazards or safety concerns list them.   2) List out the glassware, tools, equipment and other materials you think you are going to need to complete the electrochemistry redox reaction (Oxidation Reduction) experiment. Be specific.
In this section, you should record any visual observations you make (colors, appearances of water, physical states, etc) for electrochemistry redox reaction (Oxidation Reduction)experiment. You should also record any numeric observations (masses, volumes, concentrations).Make sure they are organized and labeled so it is clear what the observation of electrochemistry redox reaction (Oxidation Reduction)experiment. Here is the data for the electrochemistry redox reaction (Oxidation Reduction)experiment: Part 1 was testing the observed vs theoretical cell potentials for the following voltaic cells: Zn/Cu reading was 0.914  Zn/Al reading was 0.210 Zn/Ag reading was 1.330 Al/Cu reading was 0.672 Ag/Cu reading was 0.413 Ag/Al reading was 1.000 Part 2 of the experiment was constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. Then measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added.

Chapter 13 Solutions

CHEMISTRY: MOLECULAR...(LLF) W/CONNECT

Ch. 13.5 - Prob. 13.6AFPCh. 13.5 - Prob. 13.6BFPCh. 13.6 - Calculate the vapor pressure lowering of a...Ch. 13.6 - Prob. 13.7BFPCh. 13.6 - Prob. 13.8AFPCh. 13.6 - Prob. 13.8BFPCh. 13.6 - Prob. 13.9AFPCh. 13.6 - Prob. 13.9BFPCh. 13.6 - A solution is made by dissolving 31.2 g of...Ch. 13.6 - Prob. 13.10BFPCh. 13.7 - Prob. B13.1PCh. 13.7 - Prob. B13.2PCh. 13 - Prob. 13.1PCh. 13 - Prob. 13.2PCh. 13 - Prob. 13.3PCh. 13 - Which would you expect to be more effective as a...Ch. 13 - Prob. 13.5PCh. 13 - Prob. 13.6PCh. 13 - Prob. 13.7PCh. 13 - Prob. 13.8PCh. 13 - Prob. 13.9PCh. 13 - Prob. 13.10PCh. 13 - Prob. 13.11PCh. 13 - What is the strongest type of intermolecular force...Ch. 13 - Prob. 13.13PCh. 13 - Prob. 13.14PCh. 13 - Prob. 13.15PCh. 13 - Prob. 13.16PCh. 13 - Prob. 13.17PCh. 13 - Prob. 13.18PCh. 13 - Prob. 13.19PCh. 13 - Prob. 13.20PCh. 13 - Prob. 13.21PCh. 13 - Prob. 13.22PCh. 13 - Prob. 13.23PCh. 13 - What is the relationship between solvation and...Ch. 13 - Prob. 13.25PCh. 13 - Prob. 13.26PCh. 13 - Prob. 13.27PCh. 13 - Prob. 13.28PCh. 13 - Prob. 13.29PCh. 13 - Prob. 13.30PCh. 13 - Prob. 13.31PCh. 13 - Prob. 13.32PCh. 13 - Prob. 13.33PCh. 13 - Prob. 13.34PCh. 13 - Prob. 13.35PCh. 13 - Use the following data to calculate the combined...Ch. 13 - Use the following data to calculate the combined...Ch. 13 - State whether the entropy of the system increases...Ch. 13 - Prob. 13.39PCh. 13 - Prob. 13.40PCh. 13 - Prob. 13.41PCh. 13 - Prob. 13.42PCh. 13 - Prob. 13.43PCh. 13 - Prob. 13.44PCh. 13 - For a saturated aqueous solution of each of the...Ch. 13 - Prob. 13.46PCh. 13 - Prob. 13.47PCh. 13 - Prob. 13.48PCh. 13 - Prob. 13.49PCh. 13 - Prob. 13.50PCh. 13 - Prob. 13.51PCh. 13 - Prob. 13.52PCh. 13 - Prob. 13.53PCh. 13 - Prob. 13.54PCh. 13 - Prob. 13.55PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - Calculate the molarity of each aqueous...Ch. 13 - Prob. 13.58PCh. 13 - Calculate the molarity of each aqueous...Ch. 13 - How would you prepare the following aqueous...Ch. 13 - Prob. 13.61PCh. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - Prob. 13.66PCh. 13 - Prob. 13.67PCh. 13 - Prob. 13.68PCh. 13 - Prob. 13.69PCh. 13 - Prob. 13.70PCh. 13 - Prob. 13.71PCh. 13 - Prob. 13.72PCh. 13 - Prob. 13.73PCh. 13 - Prob. 13.74PCh. 13 - Prob. 13.75PCh. 13 - Prob. 13.76PCh. 13 - Prob. 13.77PCh. 13 - Prob. 13.78PCh. 13 - Prob. 13.79PCh. 13 - Prob. 13.80PCh. 13 - Prob. 13.81PCh. 13 - What are the most important differences between...Ch. 13 - Prob. 13.83PCh. 13 - Prob. 13.84PCh. 13 - Prob. 13.85PCh. 13 - Prob. 13.86PCh. 13 - Prob. 13.87PCh. 13 - Prob. 13.88PCh. 13 - Classify each substance as a strong electrolyte,...Ch. 13 - Prob. 13.90PCh. 13 - Prob. 13.91PCh. 13 - Which solution has the lower freezing point? 11.0...Ch. 13 - Prob. 13.93PCh. 13 - Prob. 13.94PCh. 13 - Prob. 13.95PCh. 13 - Prob. 13.96PCh. 13 - Prob. 13.97PCh. 13 - Prob. 13.98PCh. 13 - Prob. 13.99PCh. 13 - The boiling point of ethanol (C2H5OH) is 78.5°C....Ch. 13 - Prob. 13.101PCh. 13 - Prob. 13.102PCh. 13 - Prob. 13.103PCh. 13 - Prob. 13.104PCh. 13 - Prob. 13.105PCh. 13 - Prob. 13.106PCh. 13 - Prob. 13.107PCh. 13 - Prob. 13.108PCh. 13 - Prob. 13.109PCh. 13 - Prob. 13.110PCh. 13 - Prob. 13.111PCh. 13 - In a study designed to prepare new...Ch. 13 - The U.S. Food and Drug Administration lists...Ch. 13 - Prob. 13.114PCh. 13 - Prob. 13.115PCh. 13 - Prob. 13.116PCh. 13 - In a movie theater, you can see the beam of...Ch. 13 - Prob. 13.118PCh. 13 - Prob. 13.119PCh. 13 - Prob. 13.120PCh. 13 - Prob. 13.121PCh. 13 - Gold occurs in seawater at an average...Ch. 13 - Prob. 13.123PCh. 13 - Prob. 13.124PCh. 13 - Prob. 13.125PCh. 13 - Prob. 13.126PCh. 13 - Pyridine (right) is an essential portion of many...Ch. 13 - Prob. 13.128PCh. 13 - Prob. 13.129PCh. 13 - Prob. 13.130PCh. 13 - Prob. 13.131PCh. 13 - Prob. 13.132PCh. 13 - Prob. 13.133PCh. 13 - Prob. 13.134PCh. 13 - Prob. 13.135PCh. 13 - Prob. 13.136PCh. 13 - Prob. 13.137PCh. 13 - Prob. 13.138PCh. 13 - Prob. 13.139PCh. 13 - Prob. 13.140PCh. 13 - Prob. 13.141PCh. 13 - Prob. 13.142PCh. 13 - Prob. 13.143PCh. 13 - The release of volatile organic compounds into the...Ch. 13 - Although other solvents are available,...Ch. 13 - Prob. 13.146PCh. 13 - Prob. 13.147PCh. 13 - Prob. 13.148PCh. 13 - Prob. 13.149PCh. 13 - Prob. 13.150PCh. 13 - Prob. 13.151PCh. 13 - Suppose coal-fired power plants used water in...Ch. 13 - Urea is a white crystalline solid used as a...Ch. 13 - Prob. 13.154PCh. 13 - Prob. 13.155PCh. 13 - Prob. 13.156PCh. 13 - Prob. 13.157PCh. 13 - Prob. 13.158PCh. 13 - Prob. 13.159PCh. 13 - Prob. 13.160PCh. 13 - Prob. 13.161PCh. 13 - Prob. 13.162PCh. 13 - Figure 12.11 shows the phase changes of pure...Ch. 13 - KNO3, KClO3, KCl, and NaCl are recrystallized as...Ch. 13 - Prob. 13.165PCh. 13 - Prob. 13.166PCh. 13 - Prob. 13.167P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY