The molar mass of X needs to be determined if the vapor pressure of X is 96 mmHg at 60°C and benzene has a vapor pressure of 395 mmHg in a 50:50 mixture by mass of benzene and X has a vapor pressure of 299 mmHg. Concept introduction: Colligative properties are the properties that depend on the number of particles present in the solution. Elevation in boiling point, depression in freezing point, lowering in vapor pressure and osmotic pressure are some common examples of colligative properties. Vapor pressure is the pressure at which is exerted by vapor on the liquid surface in a closed system when the system is in thermodynamic equilibrium. When a non-volatile solute is dissolved in a solvent to get the solution the vapor pressure decreases for the solution and it can be calculated with the help of Raoult’s law that states that the vapor pressure of the solution is the product of mole fraction of solvent and vapor pressure of the pure solvent.
The molar mass of X needs to be determined if the vapor pressure of X is 96 mmHg at 60°C and benzene has a vapor pressure of 395 mmHg in a 50:50 mixture by mass of benzene and X has a vapor pressure of 299 mmHg. Concept introduction: Colligative properties are the properties that depend on the number of particles present in the solution. Elevation in boiling point, depression in freezing point, lowering in vapor pressure and osmotic pressure are some common examples of colligative properties. Vapor pressure is the pressure at which is exerted by vapor on the liquid surface in a closed system when the system is in thermodynamic equilibrium. When a non-volatile solute is dissolved in a solvent to get the solution the vapor pressure decreases for the solution and it can be calculated with the help of Raoult’s law that states that the vapor pressure of the solution is the product of mole fraction of solvent and vapor pressure of the pure solvent.
Solution Summary: The author explains that the molar mass of X needs to be determined if a volatile solute is added to the solvent. Colligative properties depend on the number of particles present in the solution.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 13, Problem 13.141SP
Interpretation Introduction
Interpretation:
The molar mass of X needs to be determined if the vapor pressure of X is 96 mmHg at 60°C and benzene has a vapor pressure of 395 mmHg in a 50:50 mixture by mass of benzene and X has a vapor pressure of 299 mmHg.
Concept introduction:
Colligative properties are the properties that depend on the number of particles present in the solution. Elevation in boiling point, depression in freezing point, lowering in vapor pressure and osmotic pressure are some common examples of colligative properties. Vapor pressure is the pressure at which is exerted by vapor on the liquid surface in a closed system when the system is in thermodynamic equilibrium.
When a non-volatile solute is dissolved in a solvent to get the solution the vapor pressure decreases for the solution and it can be calculated with the help of Raoult’s law that states that the vapor pressure of the solution is the product of mole fraction of solvent and vapor pressure of the pure solvent.
1.
How many neighbors does the proton that produces the multiplet below have?
2.
3.
اللـ
Draw a partial structure from the multiplet below. (The integration of the multiplet is 6)
M
Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical
shifts of the protons indicated below. (Show your work!!!)
B
A
Br
SH
1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°?
To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide.
kindly show me how to solve this long problem. Thanks
4.
An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal
B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!)
5.
Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl.
200
150
100
50
ō (ppm)
1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.