
(a)
Interpretation:
The molality and van’t Hoff factor for the aqueous
Concept introduction:
Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by
The formula to calculate the molality of the solution is as follows:
The formula to calculate the change in freezing point is as follows:
Here,
The van’t Hoff factor is a measure of the effect of solute on the colligative properties. It is represented by
(a)

Answer to Problem 13.110P
The molality and van’t Hoff factor for the aqueous
Explanation of Solution
Consider the mass of the solution to be.
The formula to calculate the mass of the compound is as follows:
Substitute
The formula to calculate the moles of the compound is as follows:
Substitute
The formula to calculate the mass of the solution is as follows:
Rearrange equation (5) to calculate the mass of the solvent as follows:
Substitute
Substitute
The formula to calculate the change in freezing point is as follows:
Substitute
Rearrange equation (2) to calculate the van’t Hoff factor of the solution as follows:
Substitute
The molality and van’t Hoff factor for the aqueous
(b)
Interpretation:
The molality and van’t Hoff factor for the aqueous
Concept introduction:
Molality is the measure of the concentration of solute in the solution. It is the amount of solute that is dissolved in one kilogram of the solvent. It is represented by
The formula to calculate the molality of the solution is as follows:
The formula to calculate the change in freezing point is as follows:
Here,
The van’t Hoff factor is a measure of the effect of solute on the colligative properties. It is represented by
(b)

Answer to Problem 13.110P
The molality and van’t Hoff factor for the aqueous
Explanation of Solution
Consider the mass of the solution to be.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The molality and van’t Hoff factor for the aqueous
Want to see more full solutions like this?
Chapter 13 Solutions
CHEMISTRY >CUSTOM<
- Can you please help me and explain how I would find a mechanism consistent, using my results. Help with number 5.arrow_forwardThe conversion of (CH3)3CI to (CH3)2C=CH2 can occur by either a one-step or a two-step mechanism, as shown in Equations [1] and [2]. [1] + I + H₂Ö: :OH [2] q slow :OH + I¯ H₂Ö: a. What rate equation would be observed for the mechanism in Equation [1]? b. What rate equation would be observed for the mechanism in Equation [2]? c. What is the order of each rate equation (i.e., first, second, and so forth)? d. How can these rate equations be used to show which mechanism is the right one for this reaction? e. Assume Equation [1] represents an endothermic reaction and draw an energy diagram for the reaction. Label the axes, reactants, products, Ea, and AH°. Draw the structure for the transition state. f. Assume Equation [2] represents an endothermic reaction and that the product of the rate-determining step is higher in energy than the reactants or products. Draw an energy diagram for this two-step reaction. Label the axes, reactants and products for each step, and the Ea and AH° for each…arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forward
- Steps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardFor a complex reaction with the rate equation v = k1[A] + k2[A]2, we can say(A) that it is of order 1.(B) that it is of order 1.5.(C) that it is of order 2.(D) that for certain values of [A] it can behave as if it were of order 1, and for other values as if it were of order 2.arrow_forward
- a. Draw a complete arrow pushing mechanism for the following. Is this the thermodynamic or the kinetic product? Use your mechanism to explain your choice. Draw all the resonance. HBr Brarrow_forwardWhich, if any, of the substances had resonance structures? How many resonance structures did each substance have from the following list: CCl4 H2O CO2 C2H4 NH3 SF6 ICl5arrow_forwardSteps and explanation pleasearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





