
Concept explainers
(a)
Interpretation:
The molarity of
Concept introduction:
Henry’s law gives the quantitative relationship between the pressure of the gas and its solubility. It states that the amount of gas dissolved in a liquid is proportional to the partial pressure of the gas. Higher the partial pressure of the gas, more will be its solubility and vice-versa.
The formula to calculate the solubility of gases according to Henry’s law is as follows:
Here,
Molarity is defined as the number of moles of solute that are dissolved in one litre of solution. It is represented by
(a)

Answer to Problem 13.162P
The molarity of
Explanation of Solution
The pressure of the nitrogen gas is calculated as follows:
Substitute
The solubility is equal to the molarity so the molarity of nitrogen gas in the blood is
The molarity of
(b)
Interpretation:
The molarity of
Concept introduction:
The formula to calculate the solubility of gases according to Henry’s law is as follows:
The formula to calculate the pressure at any height is as follows:
Here
The conversion factor to convert
The conversion factor to convert inches to
The conversion factor to convert
(b)

Answer to Problem 13.162P
The molarity of
Explanation of Solution
Substitute
The total pressure is calculated as follows:
Substitute
The pressure of the nitrogen gas is calculated as follows:
Substitute
The solubility is equal to the molarity so the molarity of nitrogen is
The molarity of
(c)
Interpretation:
The volume of
Concept introduction:
The formula of an ideal gas equation is as follows:
Here,
(c)

Answer to Problem 13.162P
The volume of
Explanation of Solution
Rearrange equation (4) to calculate the volume of gas as follows:
The formula to calculate the number of moles is as follows:
Substitute
Substitute
The volume of
Want to see more full solutions like this?
Chapter 13 Solutions
CHEMISTRY >CUSTOM<
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





