THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 83RP
Starting with the relation dh = T ds + vdP, show that the slope of a constant-pressure line on an h-s diagram (a) is constant in the saturation region, and (b) increases with temperature in the superheated region.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Who is right? A student thinks that in the open air at 25°C, water vaporizes slowly, and therefore finds in the presence of its steam. Or a student referring to the water state diagram and under an atmosphere water claims that water can only be entirely in liquid form. To which Error of reasoning is due to this "contradiction"?
Nilo
TOPIC: PRIOPERTIES OF SUBSTANCES:Note: The pressure values are absolute values unless specified.Determine the properties of H2O with units according to the following Table: Provide the complete solution
Chapter 12 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2010Q5: Please answer all parts in specific detail and explain each step with reasoningarrow_forwardDerive expressions for (a) delta u (b) delta h (c) delta s for a gas whose equation of state is P(v-a) = RT for an isothermal processarrow_forwardp/atm 2.0 1.0 EXERCISE 3 (c) 3 1 thermal (b) Ⓡ One mole of an ideal gas undergoes a cyclic three-step process according to Figure 2: (a) 1->2: reversible and adiabatic expansion starting at T₁, and pressure = 2 atm. pl (b) 2->3: reversible isothermal compression up to p3 = 1 atm and (c) 3->1: heating under constant volume, at final temperature Ti, and pressure p1 = 2 atm. Calculate the entropy changes of the gas for the three steps and for the cycle. The heat capacity under constant volume is given: cx= 12.47 J mol-¹ K-¹. V Enter your results (with units) in the Table below AS₁1+2 AS2+3 AS3+1 AS1+2+3+1arrow_forward
- TOPIC: PRIOPERTIES OF SUBSTANCES: Note: The pressure values are absolute values unless specified. Determine the properties of H2O with units according to the following Table:arrow_forwardThe simplest equation of state for liquid water is the so-called stiffened-gas equation of state in the form c(y – 1)T - II P = (9.129) where y = 4 – 7, II = 4 × 10° Pa, and c = 4200 kJkg¯'K!. (a) Determine the volumetric thermal expansion of this liquid at T = 100°C and P = 1 MPa.(b) De- termine the isothermal compressibility of this liquid at T = 100°C and P = 1 MPa.arrow_forwardIn the project, the theoretical methods will be used to construct the property tables for ammonia using the Van der Waals Equation of state. You are required to find out the specific heats of the Van der Waals gas before performing the calculation. Consider the Van der Waals gas obeying the equation of state: Р C. RT a v-b v² where a and b are empirical constant to be determined assuming the critical point occur at inflection and stationary point on the p - v diagram. The critical pressure and temperature of ammonia are 11.35 MPa and 405.5 K respectively. Assume the universal gas constant, R = 8.314 J/mol K. Sketch the following graphs using reduced temperature as the parameter, T, = 0.85, 0.86, 0.88, 0.90, 0.95, 1.00, 1.10, 1.40, 2.00, and 5.00 for ammonia. a. Reduced pressure, p, versus reduced specific volume, v,.. b. Compressibility factor, Z versus reduced pressure, pr. Internal energy of departure, (u* -u)r/RT, versus reduced pressure, p,..arrow_forward
- Answer for J and Karrow_forwardOne mole of a monatomic ideal gas undergoes a cycle that has four steps. At point 1 it starts at a pressure of 3 × 105 Pa and a volume of 20 × 10-3 m3 It undergoes an isothermal expansion to point 2 to a new volume at of 8.0 × 10-3 m?. It then undergoes an isochoric process to point 3 until its pressure is half as much of what it was at point 2. It then goes through an isothermal compression to point 4 to a volume of 20 mL. It returns to point 1 via an isochoric step. What is the temperature of the gas at point 1? How much work is done by the gas in step 1 to 2? What is the pressure of the gas at point 2? What is the total work done by the gas in the entire cycle? A monatomic ideal gas (y = 5/3) is contained within a perfectly insulated cylinder that is fitted with a movable piston. The initial pressure of the gas is 1.5 x 105 Pa. The piston is pushed so as to compress the gas, with the result that the Kelvin temperature doubles. What is the final pressure of the gas? a. 4.91 ×…arrow_forwardShow P - V or T - V diagram and indicate corresponding state.arrow_forward
- Provide clear and complete solution as well as a diagram for below given problem. 1 kg of mixture at 250oC and with enthalpy of 1861 KJ/kg and s = 4.275 KJ/kg-K undergoesisothermal process. Heat is applied until the steam becomes saturated. Determine the heatadded. At 250oC: sf = 2.7927, hf = 1085.36, hfg = 1716.20 A. 940.25 KJ B. 1715.32 KJ C. 863.45 KJ D. 634.34 KJ Answer: Aarrow_forwardNote: Use values from the Steam Tables by Keenan, Keyes, Hill and Moore.arrow_forwardFormulate : isentropic process relation for perfect gas P = f (p , T,y) %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY