THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.6, Problem 64P
To determine
To demonstrate the Joule-Thomson coefficient is given by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One mole of a gas is expanded isothermally at 300 Kelvins from 5.00 MegaPascal to 0.10 MegaPascal. If this gas obeys the equation of state given below and from this B is equal to 2.0 x10^4 L/(mol-K^2), answer the question that follow.
Calculate the change in molar Gibbs free energy (in KJ/mole) for this process. Express answer in THREE SIGNIFICANT FIGURES.
Q4 Show that for a gas obeying van der Walls equation of state,
2a
Cp – Cy = R +
vT
Derive an expression for the specific heat difference of a substance whose equation of state is:
P=[(RT)/(v-b)]-[a/(v*(v+b)*T1/2)]
Where a and b are empirical constants
Chapter 12 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- At low pressures, the compressibility factor of a van der Waals gas is given by the equation: Z = PV/RT = 1+(b- a/RT) P/RT Calculate the fugacity of nitrogen gas at 3000 K and 0.05 bar. The van der Waals constants of nitrogen gas are a = 1.408 L^2-bar-mol^2 and b = 0.03913 L-mol^-1. By investigating the fugacity coefficient, what can be said about nitrogen at this temperature and pressure? *final answer in 4 decimalsarrow_forwardYou have a 3.00-liter container filled with N₂ at 25°C and 4.25 atm pressure connected to a 2.00-liter container filled with Ar at 25°C and 2.75 atm pressure. A stopcock connecting the containers is opened and the gases are allowed to equilibrate between the two containers. What is the final pressure (in atm) in the two containers if the temperature remains at 25°C? Assume ideal behavior.arrow_forwardQ3: In a closed vessel with a volume of 50 dm3 there are 2 moles of an ideal monoatomic gas with cv, m = 12.471 J K-1 mol-1 at 25°C. The vessel was heated to 125°C. Calculate the values of Q, W, AU, AH in Joules and the initial and final pressure in the system. R = 8,314 J K-1 mol-1. Cp,m = 20,785 J K-1 mol-1arrow_forward
- Calculate AH, AU, w, and q for the reversible heating of 1 mol of liquid water from 273 K to 373 K at 1 atm. ΔΗΞ 1806.88 You are correct AU = -1065.729 You are incorrect W = -741.151 You are incorrect q= 1806.88 You are correct X cal cal X cal calarrow_forwardsolve the question given in the image.arrow_forwardOxygen gas initially at 355 K and 1.50 bar undergoes the following cyclic processes in a closed system:Step 1: Adiabatic compression to 7.50 barStep 2: Addition of 13 240.0 J/mol of heat to raise the temperature at constant pressureStep 3: Adiabatic expansion to 1.50 barStep 4: Isobaric cooling back to original state.Determine ΔU, ΔH, Q and W for each step, and for the overall reversible process. Express all answers in kJ/mol and up to decimal placesarrow_forward
- The equation dU = T dS – P dV is applicable to infinitesimal changes occurring in A.A closed system with changes in composition B.An open system with changes in composition C.An open system of constant composition D.A closed system of constant composition E.None of thesearrow_forwardAt 298 K, two moles of the monoatomic gas argon extend isothermally from Vi = 0.025 m3 to Vf = 0.050 m3. Find (a) the work performed by the gas, (b) the change in the gas's internal energy, and (c) the heat supplied to the gas, all assuming that argon acts as an ideal gas.arrow_forwardA round bottom flask containing 1.75 moles of ideal gas molecules, for which C_(V,m) = 3/2 R is heated reversibly from [T_1 = 263 K, p_1 = 97 kPa] to [T_2 = 363 K, p_2 = ?] at constant volume. Calculate p2, ΔU, q, and w.arrow_forward
- A 5kg Cu block at 200 C is submerged in 100 lb water at 10 C in an insulated vessel Determine the final equilibrium temperature.arrow_forwardSaturation temperature of water at 2 atm is 90 С 100 С 110 C 120 Carrow_forward4. A container contains 0.2 m^3 of liquid water and 2.5 m^3 of vapor in equilibrium at 50°C. Determines the quality (x) and the pressure at which the mixture is found.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license