THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 68P
On the generalized enthalpy departure chart, the normalized enthalpy departure values seem to approach zero as the reduced pressure PR approaches zero. How do you explain this behavior?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Enthalpy departure functions are plotted for CO2, Ar, and benzene (B) at 10 MPa pressure as a function of temperature. Which is the correct identification of the curves?
1
2
3
200
300
400
500
600
700
temperature (K)
1-СО2, 2-Aг, 3-В
1-B, 2-Aг, 3-СО2
d.
1-Aг, 2-B, 3-СО»
а.
b.
1-СО2, 2-В, 3-Аr
е.
с.
1-Aг, 2-СО,, 3-В
f.
none of the choices
enthalpy departure function
(kJ/mol)
Please solve this correctly
Derive expressions for (a) delta u (b) delta h (c) delta s for a gas whose equation of state is P(v-a) = RT for an isothermal process
Chapter 12 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In the project, the theoretical methods will be used to construct the property tables for ammonia using the Van der Waals Equation of state. You are required to find out the specific heats of the Van der Waals gas before performing the calculation. Consider the Van der Waals gas obeying the equation of state: Р C. RT a v-b v² where a and b are empirical constant to be determined assuming the critical point occur at inflection and stationary point on the p - v diagram. The critical pressure and temperature of ammonia are 11.35 MPa and 405.5 K respectively. Assume the universal gas constant, R = 8.314 J/mol K. Sketch the following graphs using reduced temperature as the parameter, T, = 0.85, 0.86, 0.88, 0.90, 0.95, 1.00, 1.10, 1.40, 2.00, and 5.00 for ammonia. a. Reduced pressure, p, versus reduced specific volume, v,.. b. Compressibility factor, Z versus reduced pressure, pr. Internal energy of departure, (u* -u)r/RT, versus reduced pressure, p,..arrow_forward-1 kg of moist air of RH 70% at 21°C is cooled at constant pressure of 1 bar to 5°C. The vapour pressure at 21°C and 5°C are 0.025 bar and 0.0087 bar. The percentage of water vapour that condenses into water, at 5°C isarrow_forwardExpress the Joule coefficient and the Joule – Thomson coefficient as its value for an ideal gas.arrow_forward
- 1%V9 III. OT : 0 العنوان ۱۲:۰۸ For the adiabatic mixing of mixtures of gases, prove P this temperature or gas mixture can be calculate using the equation ◆low: t tem For the adiabatic mixing of mixtures of gases, prove the temperature of gas mixture can be calculate using the equation below: T= EnC ۱/۱ 15▾ T T el H (K) Marrow_forwardProvide clear and complete solution as well as a diagram for below given problem. 1 kg of mixture at 250oC and with enthalpy of 1861 KJ/kg and s = 4.275 KJ/kg-K undergoesisothermal process. Heat is applied until the steam becomes saturated. Determine the heatadded. At 250oC: sf = 2.7927, hf = 1085.36, hfg = 1716.20 A. 940.25 KJ B. 1715.32 KJ C. 863.45 KJ D. 634.34 KJ Answer: Aarrow_forwardAnswer seems to be 0.728 Please show the values of steam tables (or mention Table number) 1) If you have a mixture of saturated water vapor and saturated liquid water at a pressure of 6000 kPa and 276°C, and you measure the specific volume to be 0.024 m^3/kg, what is the quality of the mixture?arrow_forward
- One mole of an ideal monatomic gas, initially at a pressure of 1.29 atm and a volumeof 0.0152 m3, , is heated to a final state wherethe pressure is 6.29 atm and the volume is0.0552 m3.The gas constant is 8.31447 J/mol · K .Determine the change in entropy for thisarrow_forwardUsing ideal gas equation of state, estimate the specific volume of R-134a at 1000 KPa and 50°C, O 0.022325 m3/kg O 0.024325 m3/kg O 0.026325 m3/kg O 0.025325 m3/kgarrow_forwardAt a pressure of 0.1 MPa, the specific enthalpies of water at temperatures of20°C and 30°C are 84.03 kJ/kg and 125.9 kJ/kg respectively. Find the specificenthalpy of water at 22°C and 0.1 MPa by linear interpolation.arrow_forward
- Niloarrow_forwardPlease show complete (not shortcut) solution with derivation of formulas. Two tanks are connected by a valve. One tank contains 2.5 kg ofnitrogen gas with the temperature and pressure of 100 ºC and 80 kPa,respectively. The other tank contains 12 kg of the same gas at 30 ºC and1200 kPa. The valve is opened and the gases are allowed to mix thereceiving energy by heat transfer to the surroundings. The finaltemperature is 48 ºC. Determine the final equilibrium pressure.arrow_forwardA gas initially at 125 kPa, 7 o C is compressed to 932 kPa. Determine the final temperature in o C for (a) adiabatic with k = 1.4 (b) polytropic with n = 1.3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license