THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 60P
Estimate the Joule-Thomson coefficient of refrigerant-134a at 0.7 MPa and 50°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Estimate the Joule-Thomson coefficient for steam at 3MPA and 300°C
using the steam tables.
Estimate the Joule-Thomson coefficient for steam at 6MPA and 500°C
using the steam tables.
During phase change the Joule-Thomson coefficient is always positive or
negative?
Using gure A-14E (or A-14) in the tables of your book, is the Joule-Thomson
coefficient ever negative for r134a? If so, where is it negative relative to
temperature and pressure?
where are you finding v=0.0159939 m3/kg ? , when I look for the specific volume for saturate steam at 11000 kpa , I am finding vg=15.987 ?
4) A sample of argon at 01 atm pressure and
25C expands reversibly and adiabatically from
0.5 L to 1.0 L. Calculate its final temperature,
the work done during the expansion, and the
change in internal energy. The molar heat
capacity of argon at constant volume is 12.48
JK-1mol-1.
Chapter 12 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider the function z(x, y). Plot a differential...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 4PCh. 12.6 - Prob. 5PCh. 12.6 - Consider a function f(x) and its derivative df/dx....Ch. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...
Ch. 12.6 - Consider an ideal gas at 400 K and 100 kPa. As a...Ch. 12.6 - Using the equation of state P(v a) = RT, verify...Ch. 12.6 - Prove for an ideal gas that (a) the P = constant...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Show how you would evaluate T, v, u, a, and g from...Ch. 12.6 - Prob. 18PCh. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 26PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - Two grams of a saturated liquid are converted to a...Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Estimate the specific heat difference cp cv for...Ch. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Prob. 46PCh. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 49PCh. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 51PCh. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - Prob. 54PCh. 12.6 - Prob. 55PCh. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Estimate the Joule-Thomson coefficient of...Ch. 12.6 - Prob. 61PCh. 12.6 - Steam is throttled slightly from 1 MPa and 300C....Ch. 12.6 - What is the most general equation of state for...Ch. 12.6 - Prob. 64PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 66PCh. 12.6 - What is the enthalpy departure?Ch. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - What is the error involved in the (a) enthalpy and...Ch. 12.6 - Prob. 71PCh. 12.6 - Saturated water vapor at 300C is expanded while...Ch. 12.6 - Determine the enthalpy change and the entropy...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - Prob. 77PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 81PCh. 12.6 - Prob. 82RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Using the cyclic relation and the first Maxwell...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 93RPCh. 12.6 - Prob. 94RPCh. 12.6 - Prob. 95RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 97RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 102FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - For a gas whose equation of state is P(v b) = RT,...Ch. 12.6 - Prob. 105FEPCh. 12.6 - Prob. 106FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve it correctly please. Iarrow_forwardUsing Clapeyron relationship, estimate the enthalpy of evaporation of Re-134a at 10°C. Report your answer in kJ/kg and compare it with the data provided in table A-11.arrow_forwardA frictionless piston-cylinder contains 42 kilograms of Acetylene having a pressure of 22 bar at 320 degrees Celsius. Heating occurs at constant pressure causing the piston to move until the volume is tripled. Compute for the (a) heat, (b) change in internal energy, (c) change in enthalpy (d) change in entropy, and (e) the non-flow work. (f) If ΔPE = 0.2 kJ and ΔKE = 1.35 kJ, what is the steady-flow work?arrow_forward
- 2.0 moles of ideal monatomic gas are heated slowly from 25°C to 55°C in a rigid container. Calculate the change in entropy of the gas.arrow_forwardA sample of argon at 1 atm pressure and 25°C expands reversibly and adiabatically from 0.5 L to 1.0 L. Calculate its final temperature, the work done during the expansion, and the change in internal energy. The molar heat capacity of argon at constant volume is 12.48 JK-'mol.arrow_forwardthermodynamicsarrow_forward
- Express the Joule coefficient and the Joule – Thomson coefficient as its value for an ideal gas.arrow_forwardOnce upon a time, an engineering is conducting an experiment wherein he uses 10 moles of a gas. He then places it in a constant volume vessel. At start the gas is at P = 0.5 bar and T =300 K and the container is also at T = 300 K. He decided to place it in a furnace, where its surroundings are at a constant T = 600 K. It was left overnight in the furnace until both the container and the gas inside it reach thermal equilibrium with the surroundings. He assumed an ideal gas for this experiment at the pressures attained throughout this process, and has a constant heat capacity of CV* = 2.5R. The container itself has a mass of 10 kg (not including the mass of the gas inside) and a heat capacity of CV = 1.5 J/g - K. ● Find the heat added to the gas. a. 62.4 kJ b. 46.4 kJ c. 90.4 kJ d. 87.4 kJ e. none of these Find the heat added to the container. a.588kJ b. 638 kJ c. 1457 kJ d. 3465 kJ Find the change in entropy of the gas a. 0.14 kJ/K b.0.3 kJ/K c. 0.78 kJ/K Find the change in entropy of…arrow_forwardAt a pressure of 0.1 MPa, the specific enthalpies of water at temperatures of20°C and 30°C are 84.03 kJ/kg and 125.9 kJ/kg respectively. Find the specificenthalpy of water at 22°C and 0.1 MPa by linear interpolation.arrow_forward
- There are 1.5 kgm of gas for which R=0.377kJ/kg-K and k=1.3 that undergo an isometric process from an initial state of 550kPa and 60C. During the process there are 1500kJ of heat removed from the gas. Find the change in enthalphy (kJ)arrow_forwardGiven that μ = 0.25Katm−1 for nitrogen, calculate the value of its isothermal Joule–Thomson coefficient. Calculate the energy that must be supplied as heat to maintain constant temperature when 15.0 mol N2 flows through a throttle in an isothermal Joule–Thomson experiment and the pressure drop is 75 atm.arrow_forward50 grams of water at 20ºC is converted into steam at 250ºC at constant atmospheric pressure. Assuming the heat capacity per gram of liquid water to remain constant at 4.2 J/g K and the heat of vaporization at 100ºC to be 226 J/g, and using Cp/R=a+bT+cT2, calculate the entropy change of the system. a=3.652, b=1.157x10-3 K-1, c=0.142x10-6 K-2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License