VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.1, Problem 12.71P
The parasailing system shown uses a winch to let rope out at a constant rate so that the 70-kg rider moves away from the boat, which is traveling with a constant velocity. At the instant shown, the rope has a length of 30 m, it is increasing in length at a constant 1 m/s, the angle is increasing at a rate of 0.05 rad/s, and
Fig. P12.71
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A smooth can C, having a mass of 5 kg, is lifted from a feed at A to a ramp at B by a rotating rod. The rod maintains a constant angular velocity of θ˙ = 0.5 rad/s, Neglect the effects of friction in the calculation and the size of the can so that r=(1.2cosθ)m. The ramp from A to B is circular, having a radius of 600 mm.
(a)
Determine the magnitude of the force which the rod exerts on the can at the instant θθ = 30∘∘.
Express your answer to three significant figures and include the appropriate units.
7. The 400-lb cylinder at A is
hoisted using the motor and the
pulley system shown. If the speed
of point B on the cable is
increased at a constant rate from
zero to vg = 10/s in t = 5 s,
determine the tension in the
cable at B to cause the motion.
(Practice at Home)
B
A
В
(3) A smooth can C, having a mass of 3 kg, is lifted from
Ö=2rad/s²
é = 0.5 rad/s
a feed at A to a ramp at B by a rotating rod. If the rod
rotates angular velocity of 0=0.5 rad/s and
Ö=2rad/s2, determine the forces which the rod and
600 mm
circular ramp in the vertical plane exert on the can
at the instant 0=30°. Neglect the friction and the
size of the can so that r = (1.2cos6) m. The ramp
-600 mm-
from A to B is circular, having a radius of 600 mm.
m-5 kg
Chapter 12 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A rocket is traveling at an altitude at which the gravitational acceleration is known to be g = 26.5 ft/s². The thrust on the rocket produces an acceleration of ar = 29.3 ft/s² along the axis of the rocket. At the position shown (0 = 36.87 degrees) the speed of the rocket is known to be v = 2800 ft/s. Determine: (a) the rate of change of speed of the rocket at this instant (b) the radius of curvature for the rocket's path at this instant GTarrow_forward7. The 540-lb cylinder at A is hoisted using the motor and the pulley system shown. The speed of point B on the cable is increased at a constant rate from zero to Bv_B = 30 ft/sft/s in t = 9 sarrow_forwardThe two spheres shown collide. the weight of the first sphere (W1) is 40 N while that of the second is (W2) is 30N. assuming that the second sphere's velocity (v2) is 14 m/s and the first sphere's velocity (v1) is 16 m/s along the their respective angles. theta 1(θ1)=30 degrees and theta 2(θ2)=60 degrees. Assume velocities along y will be equal before and after impact. The coefficient of restitution is 0.57. A.) Determine the velocity of the 30N sphere after impact (m/s) B.) Determine the Velocity of the 40N sphere after impact (m/s) C.) Determine the angle of the velocity after impact of the 40N sphere with the horizontal (degrees) D.) Determine the angle of the velocity after impact for the 30N sphere with the vertical (degrees)arrow_forward
- Show that the angular momentum HB of a rigid body about point B can be obtained by adding to the angular momentum HA of that body about point A the vector product of the vector rA/B drawn from B to A and the linear momentum of the body: Further show that when a rigid body rotates about a fixed axis, its angular momentum is the same about any two points A and B located on the fixed axis (HA=HB) if, and only if, the mass center G of the body is located on the fixed axis.arrow_forwardThe nozzle shown discharges water at the rate of 40 ft3/min. Knowing that at both A and B the stream of water moves with a velocity of magnitude 75 ft/s and neglecting the weight of the vane, determine the components of the reactions at C and D.arrow_forwardIn order to uncoil electrical wire from a 0.6-m-radius spool fixed to a truck, a worker drives to the left with a speed of vA = 5 m/s. At the same time, a second worker holds the cable as he walks to the right with a speed of vB = 3 m/s. Knowing that at the instant shown the thickness of wire on the spool is 40 mm, determine (a) the instantaneous center of rotation of the spool, (b) the velocity of point D on the inside of the spool.arrow_forward
- Given that the velocity of cable A is vA = 2.5 m/s downward and that the velocity ofPusheen at C, vC is 0.5 m/s downward, determine the velocity of Pusheen at position B (vB)and pulley D (vD).arrow_forwardIn a governor of the Hartnell type the arms of the bell-crank leversare equal in length, and those carrying the operating masses arevertical when the governor is rotating at its mean speed of 775rev/min, with the masses moving in a circle of 175 mm diameter -The usual central controlling spring is replaced by two paralleltension springs direetly connecting the operating masses. Find(a) the magnitude of each operating mass if a force of 90 N isrequired at the sleeve to maintain it in the mean speed positionwhen the specd is increased from 775 to 800 rev/m in(b) the stiffness, or rate, of each spring if the ratio of sleevemovement to increase of speed is 1 mm to 10 revImin when inthe mean speed position.arrow_forwardAn object of mass m1 slides on a sloped block of mass M2, which in turn slides on a horizontal surface. The slope angle is a constant 3, and both masses are initially at rest. There is no friction between any of the objects, and the masses are subject to the force of gravity -mgêy. Use as co- ordinates the horizontal position x2 of mass m2, and the height y1 of mass m1, as shown in the y4 Y1 M2 x2 diagram to the right. Find the equation of motion of block 2, ä2(t). The expression should only include expressions involving constants: M2, m1, g, and B.arrow_forward
- I Suppose an autonomous surface vessel (ASV) traveling with velocity TvG/O= vi₁ begins to make a turn by adjusting the thrust of its left and right thrusters, TA and TB, respectively. The center of mass of the ASV is located at G and the ASV is symmetric about its vertical axis. The ASV also experiences a drag force that is proportional to its speed and opposes its velocity. At the instant shown, the drag force is D = -kvi₁ where k is a drag coefficient. 1. To model the mass moment of inertia, approximate the ASV as consisting of three rigid bodies: a flat plate as a center body of mass 6m and two slender rods housing the propulsion assemblies, each of mass m, at the outboard sides of the vehicle. Determine the mass moment of inertia, IG, about the vertical axis passing through the center of mass G. (Hint: Use the parallel axis theorem.) 2. At the instant shown, determine the inertial acceleration vector ac/o = axi₁ + ayi2 of the center of mass and the angular acceleration a of the…arrow_forwardA particle M1, weighing 2.4 Ibs, is tied to a thread and describes a circular path in a horizontal plane. The thread, of negligible mass, passes through a hole in the center of the circle and descends vertically. Another particle M2 is attached, weighing 5.0 Ibs, as shown in the figure. If M1 describes a uniform circular motion, with angular velocity w 3.1 rad/s, determine the radius R of the circumference in inches.arrow_forwardPROBLEM 12.34 A single wire ACB of length 2 m passes through a ring at C that is attached to a sphere which revolves at a constant speed v in the horizontal circle shown. Knowing that 0₁ = 60° and ₂ = 30° and that the tension is the same in both portions of the wire, determine the speed v. v = 2.49 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License