Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 8Q
To determine
The elements which can be considered as donors or acceptors.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The atomic radii of a divalent cation and a monovalent anion are 0.074 nm and 0.128 nm, respectively.
Calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another) and the force of repulsion at the same distance.
The elements A and B crystallize in bcc and fcc structures, respectively. Suppose that (i) the crystals of A
and B have the same density, and (ii) the nearest-neighbor distances in these crystals are equal. Calculate the
ratio MA/MB, where MA and MB denote the masses of the A and B atoms, respectively.
please explain
Chapter 12 Solutions
Modern Physics
Ch. 12 - Prob. 1QCh. 12 - Prob. 2QCh. 12 - Prob. 3QCh. 12 - Prob. 4QCh. 12 - Prob. 5QCh. 12 - Prob. 6QCh. 12 - Prob. 7QCh. 12 - Prob. 8QCh. 12 - Prob. 9QCh. 12 - Prob. 11Q
Ch. 12 - Discuss the differences between crystalline...Ch. 12 - Prob. 13QCh. 12 - Prob. 15QCh. 12 - Prob. 16QCh. 12 - Prob. 17QCh. 12 - Prob. 19QCh. 12 - Prob. 21QCh. 12 - Prob. 22QCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - The Madelung constant for the NaCl structure may...Ch. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Determine the current generated in a...Ch. 12 - Prob. 23PCh. 12 - Under pressure, liquid helium can solidify as each...Ch. 12 - Prob. 25P
Knowledge Booster
Similar questions
- The measured density of a NaF crystal is 2.558 g/cm3 . What is the equilibrium separate distance of Na+ and Flions?arrow_forward(a) In an HCl molecule, take the Cl atom to be the isotope 35Cl. The equilibrium separation of the H and Cl atoms is 0.127 46 nm. The atomic mass of the H atom is 1.007 825 u and that of the 35Cl atom is 34.968 853 u. Calculate the longest wavelength in the rotational spectrum of this molecule. (b) What If? Repeat the calculation in part (a), but take the Cl atom to be the isotope 37Cl, which has atomic mass 36.965 903 u. The equilibrium separation distance is the same as in part (a). (c) Naturally occurring chlorine contains approximately three parts of 35Cl to one part of 37Cl. Because of the two different Cl masses, each line in the microwave rotational spectrum of HCl is split into a doublet as shown in Figure P42.11. Calculate the separation in wavelength between the doublet lines for the longest wavelength.arrow_forwardDefine the following terms: (i) Single Crystalline, Polycrystalline and Amorphous materials, (ii) Lattice, basis and crystal structure,(iii) Bravais lattice. Distinguish between the coordination number and the number of atoms per unit cell. Find both these numbers for a simple cubic lattice, a body centered cubic lattice and a face centered cubic lattice. (a)arrow_forward
- In solid KCI the smallest distance between the centers of a. potassium ion and a chloride ion is 314 pm. Calculate the length of the edge of the unit cell and the density of KCI, assuming it has the same structure as sodium chloride.arrow_forwardWhen the ions at their equilibrium interionic separation, the force of attraction between a divalent (valency of 2) cation and a monovalent (valency of 1) anion is 7.32 × 10−9 N. If the ionic radius of the cation is 0.05 nm, what is the anion radius (nm)? Round your result to 2 decimal place.arrow_forwardConsider a sample of pure Si crystal composed of 10 billion atoms. i) At 0 K, how many electrons are found in the valence band in this Si crystal sample? ii) At 0 K, how many electrons are found in the conduction band in this Si crystal sample?arrow_forward
- A sample of copper has a mass of 10.68 g when measured in air. It has a mass of 9.47 g when measured in water. Answer these three questions: How many atoms are in the sample? What is the simple volume of the space including and surrounding each atom? Assume the atoms are evenly distributed throughout the sample. That is no FCC, BCC, or HCP crystal structure. What is the diameter of each atom?arrow_forwardConsider a system consisting of a single impurity atom/ion in a semiconductor. Suppose that the impurity atom has one "extra" electron compared to the neighboring atoms, as would a phosphorus atom occupying a lattice site in a silicon crystal. The extra electron is then easily removed leaving behind a positively charged ion. The ionized electron is called a conduction electron, because it is free to move through the material; the impurity atom is called a donor, because it can "donate" a conduction electron. This system is analogous to the hydrogen atom considered in the previous two problems except that the ionization energy is much less mainly due to the screening of the ionic charge by the dielectric behavior of the medium. Now assume that every conduction electron comes from an ionized donor atom. In this case the number of conduction electrons is equal to the number of donors that are ionized. Use this condition to derive a quadratic equation for Nc in terms of the number of…arrow_forwardWhen a photon enters the depletion zone of a p-n junction, the photon can scatter from the valence electrons there, transferring part of its energy to each electron, which then jumps to the conduction band. Thus, the photon creates electron–hole pairs. For this reason, the junctions are often used as light detectors, especially in the x-ray and gamma-ray regions of the electromagnetic spectrum. Suppose a single 662 keV gamma-ray photon transfers its energy to electrons in multiple scattering events inside a semiconductor with an energy gap of 1.1 eV, until all the energy is transferred. Assuming that each electron jumps the gap from the top of the valence band to the bottom of the conduction band, find the number of electron – hole pairs created by the process.arrow_forward
- When a phosphorus atom is substituted for a silicon atom in a crystal, four of the phosphorus valence electrons form bonds with neighboring atoms and the remaining electron is much more loosely bound. You can model the electron as free to move through the crystal lattice. The phosphorus nucleus has one more positive charge than does the silicon nucleus, however, so the extra electron provided by the phosphorus atom is attracted to this single nuclear charge +e. The energy levels of the extra electron are similar to those of the electron in the Bohr hydrogen atom with two important exceptions. First, the Coulomb attraction between the electron and the positive charge on the phosphorus nucleus is reduced by a factor of 1/k from what it would be in free space (see Eq. 25.23), where k is the dielectric constant of the crystal. As a result, the orbit radii are greatly increased over those of the hydrogen atom. Second, the influence of the periodic electric potential of the lattice causes…arrow_forwardYou are tutoring a bright student in his last semester of introductory physics. The particular topic of the day is bonding in solids. When your session begins, the student hands you a slip of paper with the following equation printed on it: U, = -ak, 1 m He says that he found this equation in his online studying and that it is described as an expression for the ionic cohesive energy of a crystal formed by ionic bonding. He asks you to derive this equation.arrow_forwardLight-emitting diodes, known by the acronym LED, produce the familiar green and red indicator lights used in a wide variety of consumer electronics. LEDs are semiconductor devices in which the electrons can exist only in certain energy levels. Much like molecules, the energy levels are packed together close enough to form what appears to be a continuous band of possible energies. Energy supplied to an LED in a circuit excites electrons from a valence band into a conduction band. An electron can emit a photon by undergoing a quantum jump from a state in the conduction band into an empty state in the valence band, as shown. The size of the band gap ΔEband determines the possible energies— and thus the wavelengths—of the emitted photons. Most LEDs emit a narrow range of wavelengths and thus have a distinct color. This makes them well-suited for traffic lights and other applications where a certain color is desired, but it makes them less desirable for general illumination. One way to make…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax