Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 25P

(a)

To determine

The current in the loop using graphical method.

(a)

Expert Solution
Check Mark

Answer to Problem 25P

The current in the loop, using graphical method, is 2.98 mA .

Explanation of Solution

Write the ideal diode equation for the current through the diode.

  ID=Is(eeΔV/kBT1)

Here, ID is the current through the diode, Is is the reverse saturation current, e is the magnitude of the electronic charge, ΔV is the voltage across the diode, kB is the Boltzmann constant and T is the absolute temperature.

Substitute 1.00 μA for Is and 25.0 meV for kBT in the above equation.

  ID=(1.00 μA106 A1 μA)(eeΔV/(25.0 meV1 eV103 meV)1)=(106 A)(eeΔV/0.025 eV1)=(106 A)(eΔV/0.025 V1)        (I)

Write the equation for the current in the wire.

  Iw=εΔVR

Here, Iw is the current through the wire, ε is the potential difference provided by the battery and R is the value of the resistor.

Substitute 2.42 V for ε and 745 Ω for R in the above equation.

  Iw=2.42 VΔV745 Ω        (II)

Equations (I) and (II) are plotted in figure 1 with the currents along the vertical axis and ΔV along the horizontal axis.

Modern Physics, Chapter 12, Problem 25P

The two graphs meet at ΔV=0.200 V .

Conclusion:

Substitute 0.200 V for ΔV in equation (I) to find ID .

  ID=(106 A)(e0.200 V/0.025 V1)=2.98×103 A1 mA103 A=2.98 mA

Substitute 0.200 V for ΔV in equation (II) to find Iw .

  Iw=2.42 V0.200 V745 Ω=2.98×103 A1 mA103 A=2.98 mA

The currents agree to three digits.

Therefore, the current in the loop, using graphical method, is 2.98 mA .

(b)

To determine

The ohmic resistance of the diode.

(b)

Expert Solution
Check Mark

Answer to Problem 25P

The ohmic resistance of the diode is 67.1 Ω .

Explanation of Solution

Write the equation for the ohmic resistance of the diode.

  RD=ΔVID        (III)

Here, RD is the ohmic resistance of the diode.

Conclusion:

Substitute 0.200 V for ΔV and 2.98 mA for ID in equation (III) to find RD .

  RD=0.200 V2.98 mA1 A103 mA=67.1 Ω

Therefore, the ohmic resistance of the diode is 67.1 Ω .

(c)

To determine

The dynamic resistance of the diode.

(c)

Expert Solution
Check Mark

Answer to Problem 25P

The dynamic resistance of the diode is 8.39 Ω .

Explanation of Solution

Write the equation for the dynamic resistance of the diode.

  Rdy=d(ΔV)dID

Here, Rdy is the dynamic resistance of the diode.

Rearrange the above equation.

  Rdy=[dIDd(ΔV)]1

Put equation (I) in the above equation.

  Rdy=d((106 A)(eΔV/0.025 V1))d(ΔV)=(106 A)d(eΔV/0.025 V1)d(ΔV)=(106 A)eΔV/0.025 V0.025 V        (IV)

Conclusion:

Substitute 0.200 V for ΔV in equation (IV) to find Rdy .

  Rdy=(106 A)e0.200 V/0.025 V0.025 V=8.39 Ω

Therefore, the dynamic resistance of the diode is 8.39 Ω .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning