Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 12P

(a)

To determine

The drift speed of the electrons in GaAs.

(a)

Expert Solution
Check Mark

Answer to Problem 12P

The drift speed of the electrons in GaAs is 85000 cm/s .

Explanation of Solution

Write the equation for the drift speed.

  vd=μE        (I)

Here, vd is the drift speed, μ is the electron mobility and E is the electric field.

Conclusion:

Substitute 8500 cm2/Vs for μ and 10 V/cm for E in equation (I) to find vd .

  vd=(8500 cm2/Vs)(10 V/cm)=85000 cm/s

Therefore, the drift speed of the electrons in GaAs is 85000 cm/s .

(b)

To determine

The percent of the drift speed to the electron’s thermal speed at 300 K .

(b)

Expert Solution
Check Mark

Answer to Problem 12P

The percent of the drift speed to the electron’s thermal speed at 300 K is 0.73% .

Explanation of Solution

Write the equation connecting the kinetic energy and the thermal energy of the electron.

  12mvth2=3kBT2

Here, m is the mass of the electron, vth is the thermal speed of the electron, kB is the Boltzmann constant and T is the absolute temperature.

Rewrite the above equation for vth .

  mvth2=3kBTvth2=3kBTmvth=3kBTm        (II)

Write the equation for the percentage of the drift speed to the electron’s thermal speed.

  Percentage=vdvth×100%        (III)

Conclusion:

The value of kB is 1.40×1023 J/K and the mass of the electron is 9.11×1031 kg .

Substitute 1.40×1023 J/K for kB , 300 K for T and 9.11×1031 kg for m in equation (II) to find vth .

  vth=3(1.40×1023 J/K)(300 K)9.11×1031 kg=117000 m/s100 cm1 m=1.17×107 cm/s

Substitute 85000 cm/s for vd and 1.17×107 cm/s for vth in equation (III) to find the percentage.

  Percentage=85000 cm/s1.17×107 cm/s×100%=0.73%

Therefore, the percent of the drift speed to the electron’s thermal speed at 300 K is 0.73% .

(c)

To determine

The average time between electron collisions.

(c)

Expert Solution
Check Mark

Answer to Problem 12P

The average time between electron collisions is 4.8×1012 s .

Explanation of Solution

Rewrite equation (I) for μ .

  μ=vdE

Write the equation for the electron mobility.

  μ=eτm

Here, e is the magnitude of the charge of the electron and τ is the average time between electron collisions.

Equate the above two equations and rewrite it for τ .

  eτm=vdEeτE=mvdτ=mvdeE        (IV)

Conclusion:

The value of e is 1.60×1019 C .

Substitute 9.11×1031 kg for m , 85000 cm/s for vd , 1.60×1019 C for e and 10 V/cm for E in equation (IV) to find τ .

  τ=(9.11×1031 kg)(85000 cm/s)(1.60×1019 C)(10 V/cm)=4.8×108 kgcm2/Js1 m2104 cm2=4.8×1012 s

Therefore, the average time between electron collisions is 4.8×1012 s .

(d)

To determine

The electronic mean path.

(d)

Expert Solution
Check Mark

Answer to Problem 12P

The electronic mean path is 5600 A .

Explanation of Solution

Write the equation for the electronic mean path.

  L=vthτ        (V)

Here, L is the electronic mean path.

Conclusion:

Substitute 1.17×107 cm/s for vth and 4.8×1012 s for τ in equation (V) to find L .

  L=(1.17×107 cm/s)(4.8×1012 s)=5.6×105 cm1 A108 cm=5600 A

Therefore, the electronic mean path is 5600 A .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax