Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 15P
(a)
To determine
The lowest frequency that will promote the electron from valence band to
(b)
To determine
The wavelength of this photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The gap between valence and conduction bands in diamond is 5.47 eV.What is the maximum wavelength of a photon that can excite an electron from the top of the valence band into the conduction band? In what region of the electromagnetic spectrum does this photon lie?
The maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm.
(a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell?
(b) Explain why pure silicon is opaque.
Q#07: The maximum wavelength of light that a certain silicon photocell can detect is 1.11 micrometer (a) what is he energy gap (in eV) between the valence and conduction bands for this photocell (b) Explain why pure silicon is opaque.
Chapter 12 Solutions
Modern Physics
Ch. 12 - Prob. 1QCh. 12 - Prob. 2QCh. 12 - Prob. 3QCh. 12 - Prob. 4QCh. 12 - Prob. 5QCh. 12 - Prob. 6QCh. 12 - Prob. 7QCh. 12 - Prob. 8QCh. 12 - Prob. 9QCh. 12 - Prob. 11Q
Ch. 12 - Discuss the differences between crystalline...Ch. 12 - Prob. 13QCh. 12 - Prob. 15QCh. 12 - Prob. 16QCh. 12 - Prob. 17QCh. 12 - Prob. 19QCh. 12 - Prob. 21QCh. 12 - Prob. 22QCh. 12 - Prob. 1PCh. 12 - Prob. 2PCh. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Prob. 5PCh. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - The Madelung constant for the NaCl structure may...Ch. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - Prob. 20PCh. 12 - Prob. 21PCh. 12 - Determine the current generated in a...Ch. 12 - Prob. 23PCh. 12 - Under pressure, liquid helium can solidify as each...Ch. 12 - Prob. 25P
Knowledge Booster
Similar questions
- For silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0).a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum? b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum?c) What limits optical absorption in silicon at photon energies near the band gap?arrow_forwardK: Estimate the ratio of the electron densities in the conduction bands of silicon (Eg 1.14 eV) and gallium arsenide (Eg = 1.42 eV) at 400 K.arrow_forwardThe effective density of states of a piece of silicon is Nc = 2x1319 cm³ in the conduction band at room temperature. Assume the intrinsic concentration, ni, is 1010 cm3. Suppose 0.1% of the equivalent density of states in the conduction band are filled with electrons at room temperature. (a) What is the doping concentration in the silicon? (b) What is the electron concentration in the silicon? (c) What is the hole concentration in the silicon? (d) What is the value of the Fermi-Dirac function f(E) at the conduction band edge?arrow_forward
- In a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct or indirect bandgap semiconductor?arrow_forwardSilicon is doped with 3×1018 arsenic atoms/cm3 and 8 × 1018 boron atoms/cm3. (a) Is this n- or p-type silicon? (b) What are the hole and electron concentrations at room temperature?arrow_forwardQuestion 11: A p-n photodiode is fabricated from a semiconductor with band gap of 2.8 ev. Can it detect a wavelength of 6000 nm?arrow_forward
- (e) Intrinsic silicon has effective densities of states in the conduction band and the valence band of 3.2 × 10¹⁹ cm−³ and 1.8 × 10¹⁹ cm-³, respectively. If the band gap is 1.12 eV, what is the concentration of intrinsic charge carriers in silicon at 300 K? A. 9.46 x 10⁹ m-³ 9.46 x 10⁹ cm-³ 0 m-3 2.40 x 1019 cm-3 B. C. D.arrow_forwardQ#04. (a) Calculate the number of atoms per unit area in (100), (110) and (111) planes of in bcc crystal with the lattice parameter of 2.5 angstrom.arrow_forwardA potassium chloride crystal has an energy band gap of 7.6 eV above the topmost occupied band, which is full. Is this crystal opaque or transparent to light of wavelength 140 nm?arrow_forward
- An abrupt silicon pn junction at zero bias has dopant concentrations of Nd = 5 X 1017 cm 3 and N₂ = 1 X 1017 cm-3 at T = a 300K. Determine the peak electric field for this junction for a reverse voltage of 5 V. Emax = O Emax O Emax 3.88 X 105 V/cm Emax 3.21 X 105 V/cm Emax = 1.70 X 105 V/cm 1.35 X 105 V/cm =arrow_forwardCalculate the intrinsic carrier concentration in silicon at T = 250 K The values of N and N, for silicon at T = 300 K are 2.8 X 1019 cm and 1.04 X 109 cm3, respectively. Both N. and N vary as T3/2. Assume the bandgap energy of silicon is 1.12 eV and does not vary over this temperature range.arrow_forwardSilicon is doped with 3×1017 arsenic atoms/cm3. (a) Is this n-or p-type silicon?(b)What are the hole and electron concentrations at room temperature? (c) What are the hole and electron concentrations at 250 K?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning