(a)
Interpretation: The reactions for which
Concept introduction: The state when the reactants involved in a
To determine: If the given has reaction has
(b)
Interpretation: The reactions for which
Concept introduction: The state when the reactants involved in a chemical reaction and the products formed in the reaction exist in concentrations having no further tendency to change is known as an equilibrium state of the reaction. When the equilibrium constant is expressed in terms of concentration, it is represented
To determine: If the given has reaction has
(c)
Interpretation: The reactions for which
Concept introduction: The state when the reactants involved in a chemical reaction and the products formed in the reaction exist in concentrations having no further tendency to change is known as an equilibrium state of the reaction. When the equilibrium constant is expressed in terms of concentration, it is represented
To determine: If the given has reaction has
(d)
Interpretation: The reactions for which
Concept introduction: The state when the reactants involved in a chemical reaction and the products formed in the reaction exist in concentrations having no further tendency to change is known as an equilibrium state of the reaction. When the equilibrium constant is expressed in terms of concentration, it is represented
To determine: If the given has reaction has
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
- Calculate K at 25°C for each of the reactions referred to in Question 32. Assume smallest whole-number coefficients.arrow_forwardCalculate G at 25C for the reaction BaSO4(s)Ba2+(aq)+SO42(aq) See Appendix C for values of Gf.What is the value of the solubility product constant, Ksp, for this reaction at 25C?arrow_forwardCalculate G and K at 25C for the reactions in Exercises 38 and 42.arrow_forward
- Describe a nonchemical system that is not in equilibrium, and explain why equilibrium has not been achieved.arrow_forwardThe following reaction occurs in pure water: H2O(l)+H2O(l)H3O+(aq)+OH-(aq) which is often abbreviated as H2O(l)H+(aq)+OH-(aq) For this reaction, G = 79.9 kJ/mol at 25C. Calculate the value of G for this reaction at 25C when [OH] = 0.15 M and [H+] = 0.71 M.arrow_forwardHydrogen gas and iodine gas react to form hydrogen iodide. If 0.500 mol H2 and 1.00 mol I2 are placed in a closed 10.0-L vessel, what is the mole fraction of HI in the mixture when equilibrium is reached at 205C? Use data from Appendix C and any reasonable approximations to obtain K.arrow_forward
- Adenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forwardFor the reaction 2Cu(s)+S(s)Cu2S(s) H and G are negative and S is positive. a At equilibrium, will reactants or products predominate? Why? b Why must the reaction system be heated in order to produce copper(I) sulfide?arrow_forwardFor the system 2SO3(g)2SO2(g)+O2(g) K=1.32 at 627. What is the equilibrium constant at 555C?arrow_forward
- 5.11. Determine the numerical value of Q for the reaction conditions indicated.arrow_forwardGiven the following data at a certain temperature, 2N2(g)+O2(g)2N2O(g)K=1.2 10 35 N2O4(g)2NO2(g)K=4.6 10 3 12 N2(g)+O2(g)NO2(g)K=4.1 10 9 calculate K for the reaction between one mole of dinitrogen oxide gas and oxygen gas to give dinitrogen tetroxide gas.arrow_forward1. A process is spontaneous in the direction that moves it away from equilibrium toward equilibriumarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning