The Physics of Everyday Phenomena
8th Edition
ISBN: 9780073513904
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 17CQ
Can scrubbers (see everyday phenomenon box 12.1) be effectively used to remove pollutants such as sulfur and mercury from exhaust gases? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two parallel metal plates with an area of 1m^2 are filled with materials with different conductivity as given in figure
a) Obtain effective retention of two metal plates.
b) If the potential difference of 10 mV (ground connection to the bottom plate) is maintained between the metal plates, Find E and J from each area.
c) Obtain the power dissipation in each area.
1. What is NOT true about fire safety precautions?
A. Avoid anything that would cause a fire around your working area.
B. Look out for damaged wire insulation.
C. If there is a burning smell on your electronic equipment, disconnect the power source right away.
D. If there’s a fire, use any liquid available at home to extinguish a fire.
2. What will happen if you clean a soldering iron on a rag when in use?
A. The rag will not remove the dirt.
B. The soldering iron will cool down.
C. The cleaning will be much easier.
D. The cloth might burn and stick on the tip.
3. Why do we need to be careful when handling large capacitors, like ones on the washing machine and CRT television even after it is disconnected from the power source?
A. It will cause a static shock.
B. The capacitor will get damaged.
C. They still hold high voltage that can cause electric shock.
D. It will cause a short circuit that can damage the…
1)
High voltage power lines are not covered with an insulating outer cover.
a)
What is the reasoning behind not putting on a protective insulating coating?
b)
Why are small birds not harmed when they land on these exposed high voltage wires?
Chapter 12 Solutions
The Physics of Everyday Phenomena
Ch. 12 - When two different materials are rubbed together,...Ch. 12 - Two pith balls are both charged by contact with a...Ch. 12 - When a glass rod is rubbed by a nylon cloth, which...Ch. 12 - Two pith balls are charged by touching one to a...Ch. 12 - Do the two metal-foil leaves of an electroscope...Ch. 12 - If you charge an electroscope with a plastic rod...Ch. 12 - When you comb your hair with a plastic comb, what...Ch. 12 - Describe how Benjamin Franklins single-fluid model...Ch. 12 - If you touch the metal ball of a charged...Ch. 12 - If you touch the ball of a charged electroscope...
Ch. 12 - When a metal ball is charged by induction using a...Ch. 12 - If, when charging by induction, you remove the...Ch. 12 - Will bits of paper be attracted to a charged rod...Ch. 12 - Why are pith balls initially attracted to a...Ch. 12 - Are electrostatic precipitators (see everyday...Ch. 12 - Can the pollutant carbon dioxide be readily...Ch. 12 - Can scrubbers (see everyday phenomenon box 12.1)...Ch. 12 - Is the concept of torque involved in the operation...Ch. 12 - If you had several identical metal balls mounted...Ch. 12 - If the distance between two charged objects is...Ch. 12 - If two charges are both doubled in magnitude...Ch. 12 - Can both the electrostatic force and the...Ch. 12 - Two charges, of equal magnitude but opposite sign,...Ch. 12 - Is it possible for an electric field to exist at...Ch. 12 - If we change the negative charge in the diagram...Ch. 12 - Three equal positive charges are located at the...Ch. 12 - Is the electric field produced by a single...Ch. 12 - If we move a positive charge toward a negative...Ch. 12 - Prob. 29CQCh. 12 - If a negative charge is moved in the same...Ch. 12 - Prob. 31CQCh. 12 - Is electric potential the same as electric...Ch. 12 - Prob. 33CQCh. 12 - Prob. 34CQCh. 12 - Would you be more likely to be struck by lightning...Ch. 12 - During a thunderstorm, why can a much greater flow...Ch. 12 - If in a typical thundercloud the bottom of the...Ch. 12 - Which is better during a thunderstorm: being in...Ch. 12 - Prob. 39CQCh. 12 - Prob. 1ECh. 12 - Prob. 2ECh. 12 - Prob. 3ECh. 12 - Prob. 4ECh. 12 - Prob. 5ECh. 12 - Prob. 6ECh. 12 - Prob. 7ECh. 12 - Prob. 8ECh. 12 - Prob. 9ECh. 12 - Prob. 10ECh. 12 - Prob. 11ECh. 12 - Prob. 12ECh. 12 - Prob. 13ECh. 12 - Prob. 14ECh. 12 - Prob. 15ECh. 12 - Prob. 16ECh. 12 - Prob. 1SPCh. 12 - Prob. 2SPCh. 12 - Prob. 3SPCh. 12 - Suppose that four equal positive charges are...Ch. 12 - Prob. 5SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF. a. Estimate the charge that passed through Musschenbroeks body. b. What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?arrow_forwardWhy do we need to be careful about work done on the system versus work done by the system in calculations?arrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 19.6) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electrical conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity , with a potential difference dV between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: ChargeconductionThermalconductiondqdt=A|dVdx|dQdt=kA|dTdx| In the analogous thermal conduction equation on the right (Eq. 19.17), the rate dQ/dt of energy flow by heat (in SI units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State analogous rules relating the direction of the electric current to the change in potential and relating the direction of energy flow to the change in temperature.arrow_forward
- An eccentric inventor attempts to levitate by first placing a large negative charge on himself and then putting a large positive charge on the ceiling of his workshop. Instead, while attempting to place a large negative charge on himself, his clothes fly off. Explain.arrow_forwardA parallel-plate capacitor in air has a plate separation of 1.50 cm and a plate area of 25.0 cm2. The plates are charged to a potential difference of 250 V and disconnected from the source. The capacitor is then immersed in distilled water. Assume the liquid is an insulator. Determine (a) the charge on the plates before and after immersion, (b) the capacitance and potential difference after immersion, and (c) the change in energy of the capacitor.arrow_forwardNote that in Figure 20.28, both the concentration gradient and the Coulomb force tend to move Na+ ions into the cell. What prevents this? Figure 20.28 The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K+ and Cl ions in the direction shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a layer of negative charge on the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na+.arrow_forward
- -gauge copper wire has a diameter of 9.266 mm. Calculate the power loss in a kilometer of such wire when it carries 1.00102 A.arrow_forwardConstruct Your Own Problem Consider a battery used to supply energy to a cellular phone. Construct a problem in which you determine the energy that must be supplied by the battery, and then calculate the amount of charge it must be able to move in order to supply this energy. Among the things to be considered are the energy needs and battery voltage. You may need to look ahead to interpret manufacturer’s battery ratings in ampere hours as energy in joules.arrow_forwardIntegrated Concepts A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 1.00102 MV. (a) What energy was dissipated? (b) What mass of water could be raised from 15°C to the boiling point and then boiled by this energy? (c) Discuss the damage that could be caused to the tree by the expansion of the boiling steam.arrow_forward
- The probability of fusion occurring is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high- temperature gas ions or by accelerating the nuclei toward one another. (a) Calculate the potential energy of two singly charged nuclei separated by 1.001012. (b) At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential energy?arrow_forward1. Present a brief explanation of how, by creating an imbalance of positive and negative charges across a gap of material, it is possible to transfer energy when those charges move. Include at least one relevant formula or equation in your presentation. 2 Procont a brief ownlond of how lectric circuit combining a capacitor with anarrow_forwardA common laboratory device for building up high voltages is the Van de Graaff generator. Which of following statements about Van de Graaff generators is not correct? A. The voltage of a Van de Graaff generator can only be increased by increasing the radius of the sphere. B. The voltage of a Van de Graaff generator can be increased by increasing the radius of the sphere or by placing the entire system in a container filled with high-pressure gas. C. In a Van de Graaff generator, a moving rubber belt carries electrons from the voltage source to a conducting sphere. D. All the above statements are correct. E. None of the above statements is correct.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY