The Physics of Everyday Phenomena
8th Edition
ISBN: 9780073513904
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12CQ
If, when charging by induction, you remove the charged rod from the vicinity of the metal ball before moving your finger from the ball, what will happen? Will the ball end up being charged? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
The Physics of Everyday Phenomena
Ch. 12 - When two different materials are rubbed together,...Ch. 12 - Two pith balls are both charged by contact with a...Ch. 12 - When a glass rod is rubbed by a nylon cloth, which...Ch. 12 - Two pith balls are charged by touching one to a...Ch. 12 - Do the two metal-foil leaves of an electroscope...Ch. 12 - If you charge an electroscope with a plastic rod...Ch. 12 - When you comb your hair with a plastic comb, what...Ch. 12 - Describe how Benjamin Franklins single-fluid model...Ch. 12 - If you touch the metal ball of a charged...Ch. 12 - If you touch the ball of a charged electroscope...
Ch. 12 - When a metal ball is charged by induction using a...Ch. 12 - If, when charging by induction, you remove the...Ch. 12 - Will bits of paper be attracted to a charged rod...Ch. 12 - Why are pith balls initially attracted to a...Ch. 12 - Are electrostatic precipitators (see everyday...Ch. 12 - Can the pollutant carbon dioxide be readily...Ch. 12 - Can scrubbers (see everyday phenomenon box 12.1)...Ch. 12 - Is the concept of torque involved in the operation...Ch. 12 - If you had several identical metal balls mounted...Ch. 12 - If the distance between two charged objects is...Ch. 12 - If two charges are both doubled in magnitude...Ch. 12 - Can both the electrostatic force and the...Ch. 12 - Two charges, of equal magnitude but opposite sign,...Ch. 12 - Is it possible for an electric field to exist at...Ch. 12 - If we change the negative charge in the diagram...Ch. 12 - Three equal positive charges are located at the...Ch. 12 - Is the electric field produced by a single...Ch. 12 - If we move a positive charge toward a negative...Ch. 12 - Prob. 29CQCh. 12 - If a negative charge is moved in the same...Ch. 12 - Prob. 31CQCh. 12 - Is electric potential the same as electric...Ch. 12 - Prob. 33CQCh. 12 - Prob. 34CQCh. 12 - Would you be more likely to be struck by lightning...Ch. 12 - During a thunderstorm, why can a much greater flow...Ch. 12 - If in a typical thundercloud the bottom of the...Ch. 12 - Which is better during a thunderstorm: being in...Ch. 12 - Prob. 39CQCh. 12 - Prob. 1ECh. 12 - Prob. 2ECh. 12 - Prob. 3ECh. 12 - Prob. 4ECh. 12 - Prob. 5ECh. 12 - Prob. 6ECh. 12 - Prob. 7ECh. 12 - Prob. 8ECh. 12 - Prob. 9ECh. 12 - Prob. 10ECh. 12 - Prob. 11ECh. 12 - Prob. 12ECh. 12 - Prob. 13ECh. 12 - Prob. 14ECh. 12 - Prob. 15ECh. 12 - Prob. 16ECh. 12 - Prob. 1SPCh. 12 - Prob. 2SPCh. 12 - Prob. 3SPCh. 12 - Suppose that four equal positive charges are...Ch. 12 - Prob. 5SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two charges Q1(1+2.00C) and Q2(+2.00C are placed symmetrically along the x-axis at x=3.00cm . Consider a charge Q3 of charge +4.00C and mass 10.0 mg moving along the y-axis. If Q3 starts from rest at y= 2.00 cm, what is its speed when it reaches y = 4.00 cm?arrow_forwardConsider n equal positively charged particles each of magnitude Q/n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the electric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (b) Explain why this result is identical to the result of the calculation done in Example 23.8.arrow_forwardFour balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forward
- Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardA sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forwardAn electroscope is a device used to measure the (relative) charge on an object (Fig. P23.20). The electroscope consists of two metal rods held in an insulated stand. The bent rod is fixed, and the straight rod is attached to the bent rod by a pivot. The straight rod is free to rotate. When a positively charged object is brought close to the electroscope, the straight movable rod rotates. Explain your answers to these questions: a. Why does the rod rotate in Figure P23.20? b. If the positively charged object is removed, what happens to the electroscope? c. If a negatively charged object replaces the positively charged object in Figure P23.20, what happens to the electroscope? d. If a charged object touches the top of the fixed conducting rod and is then removed, what happens to the electroscope?arrow_forward
- A proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forwardIntegrated Concepts Figure 18.57 shows an electron passing between two charged metal plates that create an 100 N/C vertical electric field perpendicular to the electron's original horizontal velocity. (These can be used to change the electron’s direction, such as in an oscilloscope.) The initial speed of the electron is 3.00106 m/s, and the horizontal distance it travels in the uniform field is 4.00 cm. (a) What is its vertical deflection? (b) What is the vertical component of its final velocity? (c) At what angle does it exit? Neglect any edge effects.arrow_forwardReview. Two insulating spheres have radii 0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly distributed charges 2.00 C and 3.00 C. They are released from rest when their centers are separated by 1.00 m. (a) How fast will each be moving when they collide? (b) What If? It the spheres were conductors, would the speeds be greater or less than those calculated in part (a)? Explain.arrow_forward
- A simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electorn if the field strength is 2.50104 N/C. (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.arrow_forwardThree point charges are arranged as shown in Figure P19.19. (a) Find the vector electric Field that the 6.00-nC and 3.00-nC charges together create at the origin. (b) Find the vector force on the 5.00-nC charge.arrow_forwardReview. A particle with a charge of 60.0 nC is placed at the center of a nonconducting spherical shell of inner radius 20.0 cm and outer radius 25.0 cm. The spherical shell carries charge with a uniform density of 1.33 C/m3. A proton moves in a circular orbit just outside the spherical shell. Calculate the speed of the proton.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY