Concept explainers
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A |
|
|
? | ? |
B | ? |
|
|
|
C |
|
? |
|
? |
Complete the missing information for compounds A, B, and C, each subjected to hydrogenation.
The number of rings and π bonds refers to the reactant (A, B, or C) prior to hydrogenation.
Interpretation: The missing information in the given table is to be completed.
Concept introduction: Degree of unsaturation is used to determine the total number of rings and pi bonds present in compound by just looking at the molecular formula. It does not specify the total number of rings and total number of pi bonds individually.
Answer to Problem 12.7P
The missing information about compounds A, B and C is completed in the table given below.
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A | 2 | 3 | ||
B | 0 | 1 | ||
C | 1 | 2 |
Explanation of Solution
For compound A:
Before hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number of
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation before hydrogenation is five. After hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation after hydrogenation is three.
The number of pi bonds in A is calculated by the formula,
Substitute the values of degree of unsaturation before hydrogenation and degree of unsaturation after hydrogenation in the above formula.
Hence, the number of pi bonds is two.
Number of rings is calculated by the formula,
Substitute the values of degree of unsaturation and number of pi bonds in the above formula.
Hence, the number of rings is three.
For compound B:
After hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number of
Since both maximum number of
Hence, the degree of unsaturation after hydrogenation is zero.
The number of pi bonds in B is calculated by the formula,
Substitute the values of number of pi bonds and degree of unsaturation after hydrogenation in the above formula.
Hence, degree of unsaturation before hydrogenation is one.
Before hydrogenation,
The maximum number of
The maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the number of
The number
Substitute the values of maximum number of
Hence, the molecular formula before hydrogenation is
For compound C:
Before hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation before hydrogenation is three.
Number of rings is calculated by the formula,
Substitute the values of degree of unsaturation and number of rings in the above formula.
Hence, the number of pi bonds is two.
The degree of unsaturation after hydrogenation is equal to the number of rings present in the compound. Hence, degree of unsaturation after hydrogenation is one.
After hydrogenation,
The maximum number of
The maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the number of
The number
Substitute the values of maximum number of
Hence, the molecular formula before hydrogenation is
The missing information about compounds A, B and C is completed in the table given below.
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A | 2 | 3 | ||
B | 0 | 1 | ||
C | 1 | 2 |
Table 1
The missing information about compounds A, B and C is completed in the table 1.
Want to see more full solutions like this?
Chapter 12 Solutions
Package: Loose Leaf for Organic Chemistry with Biological Topics with Connect Access Card
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
HUMAN ANATOMY
Cosmic Perspective Fundamentals
Fundamentals Of Thermodynamics
Brock Biology of Microorganisms (15th Edition)
- Vibrational contributions to internal energy and heat capacity1) are temperature independent2) are temperature dependentarrow_forwardThe approximation of calculating the partition function by integration instead of the summation of all the energy terms can only be done if the separation of the energy levels is much smaller than the product kT. Explain why.arrow_forwardExplain the meaning of: the electron partition function is equal to the degeneracy of the ground state.arrow_forward
- 28. For each of the following species, add charges wherever required to give a complete, correct Lewis structure. All bonds and nonbonded valence electrons are shown. a. b. H H H H H :0-C-H H H H-C-H C. H H d. H-N-0: e. H H-O H-O H B=0 f. H—Ö—Ñ—Ö—H Norton Private Barrow_forwardAt 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.arrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forward
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardThe number of imaginary replicas of a system of N particlesA) can never become infiniteB) can become infiniteC) cannot be greater than Avogadro's numberD) is always greater than Avogadro's number.arrow_forwardElectronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning