Concept explainers
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A |
|
|
? | ? |
B | ? |
|
|
|
C |
|
? |
|
? |
Complete the missing information for compounds A, B, and C, each subjected to hydrogenation.
The number of rings and π bonds refers to the reactant (A, B, or C) prior to hydrogenation.
Interpretation: The missing information in the given table is to be completed.
Concept introduction: Degree of unsaturation is used to determine the total number of rings and pi bonds present in compound by just looking at the molecular formula. It does not specify the total number of rings and total number of pi bonds individually.
Answer to Problem 12.7P
The missing information about compounds A, B and C is completed in the table given below.
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A | 2 | 3 | ||
B | 0 | 1 | ||
C | 1 | 2 |
Explanation of Solution
For compound A:
Before hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number of
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation before hydrogenation is five. After hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation after hydrogenation is three.
The number of pi bonds in A is calculated by the formula,
Substitute the values of degree of unsaturation before hydrogenation and degree of unsaturation after hydrogenation in the above formula.
Hence, the number of pi bonds is two.
Number of rings is calculated by the formula,
Substitute the values of degree of unsaturation and number of pi bonds in the above formula.
Hence, the number of rings is three.
For compound B:
After hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number of
Since both maximum number of
Hence, the degree of unsaturation after hydrogenation is zero.
The number of pi bonds in B is calculated by the formula,
Substitute the values of number of pi bonds and degree of unsaturation after hydrogenation in the above formula.
Hence, degree of unsaturation before hydrogenation is one.
Before hydrogenation,
The maximum number of
The maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the number of
The number
Substitute the values of maximum number of
Hence, the molecular formula before hydrogenation is
For compound C:
Before hydrogenation, the molecular formula is
The maximum number of
The maximum number of
The number
Substitute the values of maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the degree of unsaturation before hydrogenation is three.
Number of rings is calculated by the formula,
Substitute the values of degree of unsaturation and number of rings in the above formula.
Hence, the number of pi bonds is two.
The degree of unsaturation after hydrogenation is equal to the number of rings present in the compound. Hence, degree of unsaturation after hydrogenation is one.
After hydrogenation,
The maximum number of
The maximum number of
The degree of unsaturation is calculated by the formula,
Hence, the number of
The number
Substitute the values of maximum number of
Hence, the molecular formula before hydrogenation is
The missing information about compounds A, B and C is completed in the table given below.
Compound | Molecular formula before hydrogenation | Molecular formula after hydrogenation | Number of rings | Number of pi bonds |
A | 2 | 3 | ||
B | 0 | 1 | ||
C | 1 | 2 |
Table 1
The missing information about compounds A, B and C is completed in the table 1.
Want to see more full solutions like this?
Chapter 12 Solutions
Organic Chemistry
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
HUMAN ANATOMY
Cosmic Perspective Fundamentals
Fundamentals Of Thermodynamics
Brock Biology of Microorganisms (15th Edition)
- Q1: Curved Arrows, Bronsted Acids & Bases, Lewis Acids & Bases Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Bronsted acids and bases in the left side of the reactions. Label conjugate acids and bases in the right side of the reactions. d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. + OH CH30: OH B. + HBr C. H₂SO4 D. CF 3. CH 3 + HCI N H fluoxetine antidepressant 1↓ JDownloadarrow_forwardDon't used Ai solutionarrow_forwardPart 3: AHm,system Mass of 1.00 M HCI Vol. of 1.00 M HCI Mass of NaOH(s) Total Mass in Calorimeter Mole product if HCI limiting reactant Trial 1 62.4009 1.511g Mole product if NaOH limiting reactant Limiting reactant Initial Temperature Final Temperature 23.8°C 37.6°C Change in Temperature AHm,system (calculated) Average AHm,system (calculated) (calculated) (calculated) Trial 2 64.006g 1.9599 (calculated) (calculated) (calculated) (calculated) (calculated) (calculated) 24.7°C 41.9°C (calculated) (calculated) (2 pts. each)arrow_forward
- 1.) Using the graph below (including the line equation of y = -1.823x - 0.0162) What is the numerical value for the slope shown? 2.) What are the Unit(s) associated with the slope of the line shown? for we all remember that numerical data always has units. 3.) What would be a good title for this graph and explain your choice. 0.00 0.0 02 0.4 10.6 08 10 12 -0.20 -0.40 -0.60 -0.80 Temp, freezing, in degrees Celcius 5-1.00 -1.20 -1.40 -1:60 y=-1.823x-0.0162 -180 -2.00 Concentration of Sucrose (m)arrow_forwardDon't used Ai solutionarrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling. Please label in the image, so it fits explanation. I am still very unsure I undertand this.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning