![Chemistry for Engineering Students](https://www.bartleby.com/isbn_cover_images/9781285199023/9781285199023_largeCoverImage.gif)
Concept explainers
(a)
To determine:
Write chemical equations and equilibrium, expressions for the reactions of ammonia with water.
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Apply the concept
So, here, rate of equilibrium reaction
In this equilibrium, water is pure liquid and its concentration is constant
Dissociation constant
(b)
To determine:
Write chemical equations of equilibrium expressions for the reactions of methylamine. With water.
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Apply the concept
Rate of equilibrium reaction
Rate of equilibrium reaction
In this equilibrium,
Dissociation constant
(c)
To determine: Write chemical equations and equilibrium expressions for weak bases acetate ion
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Apply the concept
Rate of equilibrium reaction
Rate of equilibrium constant is as
In this equilibrium,
Dissociation constant
(d)
To determine: Write chemical equations and equilibrium expressions for hydrogen carbonate ion
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Rate of equilibrium constant for reaction
Rate of equilibrium reaction
Rate of equilibrium constant is as
In this equilibrium,
Dissociation constant
(e)
To determine: Write chemical equations and equilibrium expressions for aniline ion
(e)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Apply the concept
Rate of equilibrium constant for reaction
Rate of equilibrium reaction
Rate of equilibrium constant is as
In this equilibrium,
Dissociation constant
Hence, all the parts have been described.
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry for Engineering Students
- Nonearrow_forwardIn the solid state, oxalic acid occurs as a dihydrate with the formula H2C2O4 C+2H2O. Use this formula to calculate the formula weight of oxalic acid. Use the calculated formula weight and the number of moles (0.00504mol) of oxalic acid in each titrated unknown sample recorded in Table 6.4 to calculate the number of grams of pure oxalic acid dihydrate contained in each titrated unknown sample.arrow_forward1. Consider a pair of elements with 2p and 4p valence orbitals (e.g., N and Se). Draw their (2p and 4p AO's) radial probability plots, and sketch their angular profiles. Then, consider these orbitals from the two atoms forming a homonuclear л-bond. Which element would have a stronger bond, and why? (4 points)arrow_forward
- Write the reaction and show the mechanism of the reaction. Include the mechanism for formation of the NO2+ 2. Explain, using resonance structures, why the meta isomer is formed. Draw possible resonance structures for ortho, meta and para.arrow_forwardNonearrow_forward3. A molecular form of "dicarbon", C2, can be generated in gas phase. Its bond dissociation energy has been determined at 599 kJ/mol. Use molecular orbital theory to explain why energy of dissociation for C₂+ is 513 kJ/mol, and that for C2² is 818 kJ/mol. (10 points)arrow_forward
- 9.73 g of lead(IV) chloride contains enough Cl- ions to make ____ g of magnesium chloride.arrow_forward6. a) C2's. Phosphorus pentafluoride PF5 belongs to D3h symmetry group. Draw the structure of the molecule, identify principal axis of rotation and perpendicular (4 points) b) assume that the principal axis of rotation is aligned with z axis, assign symmetry labels (such as a1, b2, etc.) to the following atomic orbitals of the P atom. (character table for this group is included in the Supplemental material). 3s 3pz (6 points) 3dz²arrow_forward2. Construct Lewis-dot structures, and draw VESPR models for the ions listed below. a) SiF5 (4 points) b) IOF4 (4 points)arrow_forward
- 5. Complex anion [AuCl2]¯ belongs to Doh symmetry point group. What is the shape of this ion? (4 points)arrow_forward4. Assign the following molecules to proper point groups: Pyridine N 1,3,5-triazine N Narrow_forward7. a) Under normal conditions (room temperature & atmospheric pressure) potassium assumes bcc lattice. Atomic radius for 12-coordinate K atom is listed as 235 pm. What is the radius of potassium atom under normal conditions? (3 points) b) Titanium metal crystallyzes in hcp lattice. Under proper conditions nitrogen can be absorbed into the lattice of titanium resulting in an alloy of stoichiometry TiNo.2. Is this compound likely to be a substitutional or an interstitial alloy? (Radius of Ti (12-coordinate) is 147 pm; radius of N atom is 75 pm. (3 points)arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)