(a)
Interpretation:
To determine eutectoid temperature, the composition of phase, amount of each phase of ZrO2-CaO.
Concept Introduction:
The graphical representation of the physical state of a substance which is under various conditions of pressure and temperature is known as phase diagram. A phase diagram has temperature on the x-axis and pressure on the y-axis. It is a type of chart which is used to demonstrate conditions at which
Answer to Problem 12.74P
The percentage of monoclinic and cubic is
Explanation of Solution
Sketch a horizontal line at
Therefore, from the graph mentioned above, the percentage of Monoclinic,
(b)
Interpretation:
To determine the eutectoid temperature, composition and amount of phase in Cu-Al at
Concept Introduction:
The graphical representation of the physical state of a substance which is under various conditions of pressure and temperature is known as phase diagram. A phase diagram has temperature on the x-axis and pressure on the y-axis. It is a type of chart which is used to demonstrate conditions at which thermodynamically different phases takes place and coexist at equilibrium.
Answer to Problem 12.74P
The percentage of composition obtained are
Explanation of Solution
Draw a horizontal line that passes through
At this particular temperature, β phase transforms to a phase, as shown in the diagram above.
Therefore,
(c)
Interpretation:
To determine the eutectoid temperature, composition and amount of each phase in
Concept Introduction:
The graphical representation of the physical state of a substance which is under various conditions of pressure and temperature is known as phase diagram. A phase diagram has temperature on the x-axis and pressure on the y-axis. It is a type of chart which is used to demonstrate conditions at which thermodynamically different phases takes place and coexist at equilibrium.
Answer to Problem 12.74P
The percentage composition of a and that of
Explanation of Solution
Draw a vertical line from 47 weight percent of Zinc that meets a point A. Further, from A draw the meeting point B and C, these points are in equilibrium with α and γ phases, weight percentages at these points are
Therefore,
(d)
Interpretation:
To determine the eutectoid temperature amount and composition of each phase in Cu-Be.
Concept Introduction:
The graphical representation of the physical state of a substance which is under various conditions of pressure and temperature is known as phase diagram. A phase diagram has temperature on the x-axis and pressure on the y-axis. It is a type of chart which is used to demonstrate conditions at which thermodynamically different phases takes place and coexist at equilibrium.
Answer to Problem 12.74P
The percentage composition of the a phase and γ phase is obtained as 51.6% and 48.3%
Explanation of Solution
Sketch a vertical line from 6 weight percent of beryllium that meets a point A. Further, from A draw line meeting point B and C, these points are in equilibrium with phase
Want to see more full solutions like this?
Chapter 12 Solutions
Essentials Of Materials Science And Engineering
- reading is 0.4 mas SHOWN. Assume h₁ = 0.4 m, h₂ = 0.5 m. (a) Do you know the specific weight of mercury? (b) Do you know the specific weight of gasoline? (c) Do you know the specific weight of oil? (a) YHg = 133,000 (b) Ygas = 6867 (c) Yoil = 8829 eTextbook and Media Part 2 N/m³ N/m³ N/m³ A+ Gasoline t +B Oil -Mercury Attempts: unlimited Did you calculate the pressure difference between two locations using the correct specific weight? Did you assume that the pressures in fluid are the same in a horizontal plane even though they are in different tubes? Are the calculated pressures in a column of fluid always higher at lower elevations? Did you account for the fact that the two horizontal tubes of the U-tube are above the ground? Concepts: The pressure in a fluid is a function of the specific weight of the fluid and the height relative to a reference. Pressure is constant in a horizontal plane of a continuous mass of fluid. (a) What is the initial pressure difference? (PA-PB) (b) What is…arrow_forwardFind the solution of the following Differential Equations 1) "-4y+3y=0 3) "+16y=0 2) y"-16y=0 4) y"-y-6y=0 5) y"+2y=0 7) y"+y=0, (#0) 9) y"-y=0, y(0) = 6, y'(0) = -4 11) y"-4y+3y=0, y(0)=-1, 13) y'(0) = -5 "+2y+2y=0 15) y"-9y=0 17) y"-4y=0 6) y"-2y+2y=0 8) "+4y+5y=0 10) y"-9y=0, y(0) = 2, y'(0) = 0 12) y"-3y+2y= 0, y(0)=-1, y'(0) = 0 14) 4y+4y+y=0 16) "+6y+12y=0 18) 4y+4y+17y=0arrow_forwardFind Laplace transform of x(t) = −e¯btu(−t) + e¯atu(t) Find Laplace transform of x(t) = u(t)arrow_forward
- please show complete solution, step by step, thanksarrow_forward1. What is the weight of each block shown below in pounds? A) 2’x2’x10’ Steel Bar w=490lb/ft^3 B) 5’x4’x3’ Concrete Block w=150lb/ft^3 A) 3’x10’x2’ Wood block w=50lb/ft^3 2.The 6” thick, 20’x25’ concrete slab weights 150lbs/ft^3 and has an area load of 50lbs/ft^2 (psf). What is the total load of the floor?arrow_forwardAccess Pearson Mastering Engineering Back to my courses Course Home Course Home Scoresarrow_forward
- Expert only, don't use artificial intelligence ,or screenshot of an AI solving stepsarrow_forwardLab Assignment #2 Loads: UDL and Concentrated Name: TA 1. Use the provided beam models to solve for the equivalent concentrated load of each beam configuration. Draw the loading conditions showing the equivalent concentrated load(s). a) w = 30lbs/ft 6ft 6ft c) w = 50lbs/ft 12ft w = 70lbs/ft b) 4ft w = 20lbs/ft w = 40lbs/ft d) 9ft 2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6ft L= 8ftarrow_forwardfind inverse LT for the following functions 1- [0.2s+1.4] s2+1.96. 2. L-1 5s+1 Ls2-25. 4s+32 3. L- L(s2-16).arrow_forward
- please show the complete solution, step by step process, thanksarrow_forwardQ Figurel shows the creation of the Frequency Reuse Pattern Using the Cluster Size K (A) illustrates how i and j can be used to locate a co-channel cell. Juster Cluster CB Cluster 2 X=7(i=2,j=1)arrow_forwardAccess Pearson Mastering Engineering Back to my courses Course Home Course Home Scores Review Next >arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY