(a)
Interpretation:
The temperature at which austenite first starts transform on cooling should be calculated.
Concept Introduction:
Austenite is defined as a gamma-phase iron, it is a metallic, non-magnetic iron allotrope or a solid solution of iron, containing an alloying element. Austenite which is known to exist above the eutectoid temperature of 1000K of plain carbon steel. Other alloys of the steel contain different eutectoid temperatures. Austenite can remain stable at room temperature only in the presence of austenite stability elements, e.g. Ni in adequate quantity.
(b)
Interpretation:
The primary micro-constituents and its forms needs to be explained.
Concept Introduction:
The microconstituent of iron carbide includes austenite (
(c)
Interpretation:
The amount and composition of each phase as 728
Concept Introduction:
The plain iron-carbon alloys contain the amount of steel between 0.002% and 2.14 % by weight. The values keep on varying depending upon alloying elements like manganese, chromium, tungsten, nickel. Therefore, steel is called as iron-carbon alloy which does not undergo any kind of eutectic reaction. Iron is also able to take two crystalline forms, body-centered cubic structure, and face-centered cubic structure, which depends upon the temperature.
(d)
Interpretation:
The amount and composition of phases at 726
Concept Introduction:
The plain iron-carbon alloys contain the amount of steel between 0.002% and 2.14 % by weight. The values keep on varying depending upon alloying elements like manganese, chromium, tungsten, nickel. Therefore, steel is called as iron-carbon alloy which does not undergo any kind of eutectic reaction. Iron is also able to take two crystalline forms, BCC structure, and FCC structure, which depends upon the temperature.
(e)
Interpretation:
The amount and composition of microconstituent at 726
Concept Introduction:
The plain iron-carbon alloys contain the amount of steel between 0.002% and 2.14 % by weight. The values keep on varying depending upon alloying elements like manganese, chromium, tungsten, nickel. Therefore, steel is called as iron-carbon alloy which does not undergo any kind of eutectic reaction. Iron is also able to take two crystalline forms, BCC structure, and FCC structure, which depends upon the temperature.
Trending nowThis is a popular solution!
Chapter 12 Solutions
Essentials Of Materials Science And Engineering
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY