
Concept explainers
(a)
Interpretation:
Solubility of nitrogen will be greater or lesser than
Concept Introduction:
Henry’s law states that the solubility of the gas at a given temperature is directly proportional to the partial pressure of the gas. This can be represented in equation form as shown below;
Where,
Solubility of gas is directly proportional to the partial pressure of the gas. Therefore, as the pressure increases, the solubility of the gas also increases.
Temperature also plays an important role in solubility of gas. If the enthalpy of the solution is positive, then the solubility will increase with the increase in temperature. If the enthalpy of the solution is negative, then the solubility will decrease with increase in temperature.
(a)

Answer to Problem 12.59QE
Solubility of nitrogen in water will be greater at
Explanation of Solution
Solubility of nitrogen is given as
(b)
Interpretation:
Solubility of nitrogen will be greater or lesser than
Concept Introduction:
Refer part (a)
(b)

Answer to Problem 12.59QE
Solubility of nitrogen in water will be lesser at
Explanation of Solution
Solubility of nitrogen is given as
(c)
Interpretation:
Solubility of nitrogen will be greater or lesser than
Concept Introduction:
Refer part (a)
(c)

Answer to Problem 12.59QE
Solubility of nitrogen in water will be greater at
Explanation of Solution
Solubility of nitrogen is given as
(d)
Interpretation:
Solubility of nitrogen will be greater or lesser than
Concept Introduction:
Refer part (a)
(d)

Answer to Problem 12.59QE
Solubility of nitrogen in water will be lesser at
Explanation of Solution
Solubility of nitrogen is given as
(e)
Interpretation:
Solubility of nitrogen will be greater or lesser than
Concept Introduction:
Refer part (a)
(e)

Answer to Problem 12.59QE
Solubility of nitrogen in water will be lesser at
Explanation of Solution
Solubility of nitrogen is given as
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry Principles And Practice
- Identify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forwardInstructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forward
- a. H3C CH3 H, 1.0 equiv. Br2arrow_forwardH3C. H3C CH 3 CH 3 CH3 1. LDA 2. PhSeCl 3. H2O2arrow_forwardPlease predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forward
- in the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forwardIs the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forwardIf we react tetraethoxypropane with hydrazine, what is the product obtained (explain its formula). State the reason why the corresponding dialdehyde is not used.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





