
Concept explainers
(a)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in liquid phase has to be given.
Concept Introduction:
Mole fraction: Mole fraction of a substance in a solution is the number of moles of that substance divided by the total number of moles of all substances present. The formula is,
(a)

Answer to Problem 12.84QE
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of 2-methylpentane and cyclohexane are calculated from their molar masses.
Moles of cyclohexane=
Moles of 2-methylpentane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane is
The mole fraction of 2-methylpentane is
(b)
Interpretation:
The vapor pressures of cyclohexane and 2-methylpentane above the solution have to be given.
Concept Introduction:
The equilibrium between a liquid and its vapor produces a characteristic vapor pressure for each substance that depends on the temperature. The lowering of the vapor pressure is caused by a lesser ability of the solvent to evaporate, so equilibrium is reached with a smaller concentration of the solvent in the gas phase. The vapor pressure of a solution is expressed using Raoult’s law:
The vapor pressure of the solvent
(b)

Answer to Problem 12.84QE
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
Explanation of Solution
Given,
Weight of cyclohexane =
Weight of 2-methylpentane =
Vapor pressure of cyclohexane =
Vapor pressure of 2-methylpentane =
The moles of cyclohexane are calculated from its molar mass.
Moles of cyclohexane=
The mole fraction of cyclohexane in the liquid phase is calculated as,
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
Mole fraction of cyclohexane=
The vapor pressure of cyclohexane is given as,
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
Vapor pressure of cyclohexane=
The moles of 2-methylpentane are calculated from its molar mass.
Moles of 2-methylpentane=
The mole fraction of 2-methylpentane is calculated from the mole fraction of cyclohexane.
Mole fraction of 2-methylpentane=
Mole fraction of 2-methylpentane=
The vapor pressure of 2-methylpentane is given as,
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
Vapor pressure of 2-methylpentane=
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
(c)
Interpretation:
The mole fraction of 2-methylpentane and cyclohexane in vapor phase has to be given.
Concept Introduction:
Refer to part (a) and (b).
(c)

Answer to Problem 12.84QE
The mole fraction of cyclohexane in vapor phase is
The mole fraction of 2-methylpentane in vapor phase is
Explanation of Solution
The vapor pressure of cyclohexane is
The vapor pressure of 2-methylpentane is
The total vapor pressure is
The mole fraction of cyclohexane and 2-methylpentane are calculated as,
Mole fraction=
Mole fraction of cyclohexane=
Mole fraction of 2-methylpentane=
The mole fraction of cyclohexane in vapor pressure is
The mole fraction of 2-methylpentane in vapor pressure is
Want to see more full solutions like this?
Chapter 12 Solutions
Chemistry Principles And Practice
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




