(a)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various
ATP is a
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(a)

Answer to Problem 12.44EP
Explanation of Solution
Nicotinamide adenine dinucleotide exists in two forms:
Here
(b)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(b)

Answer to Problem 12.44EP
ATP molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Explanation of Solution
Adenosine triphosphate (ATP) is anucleotide which structural component is one unit of the adenine base, one unit of ribose sugar and three units of a phosphate group. It can be converted into its monophosphate form(AMP) and diphosphate form(ADP) by losing a phosphate group. The reaction to this change is:
Here ATP is not involved in electron transfer hence it is neither a reducing agent nor an oxidizing agent.
(c)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(c)

Answer to Problem 12.44EP
Explanation of Solution
Flavin adenine dinucleotide exists in two forms:
Here
(d)
Interpretation: To classify each of the following molecules as (1) an oxidizing agent, (2) a reducing agent, or (3) neither an oxidizing agent nor a reducing agent.
a. NADH
b. ATP
c. FAD
d. CoA–SH
Concept introduction: The sum of various chemical reactions occurring in the human body is called metabolism and the reactions individually are known as metabolic reactions. During these metabolic reactions, the various metabolic intermediates are formed for the short time to complete the reactions.ATP,
ATP is a nucleotide which provides energy for the completion of various metabolic reactions occurring in our human body. The structure of ATP consists of adenine base, ribose sugar unit and the three phosphate groupconnected to each other by phosphoanhydride bonds.
Flavin adenine dinucleotideexists in two forms: oxidized form
Coenzyme A (CoA) is a coenzyme which is utilized in various metabolic reactions. The functions of coenzyme A include oxidation of pyruvate in the citric cycle and fatty acid oxidation.
Oxidizing agents are those species which gets reduced and oxidizes the other species present in the chemical reaction. Reducing agent is those species which gets oxidized and reduces the other species present in a chemical reaction. Generally, oxidizing agents are electron acceptor and reducing agents are electron donor.
(d)

Answer to Problem 12.44EP
Coenzyme A (CoA–SH) molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Explanation of Solution
Coenzyme A (CoA) is a coenzyme whose structure is based on the B vitamin pantothenic acid. Its structure consists of three subunits: 2-Aminoethanethiol, pantothenic acid, and phosphorylated ADP.
Coenzyme A is always in equilibrium with its acetyl form and therefore helps in transfer of acetyl group in metabolic reaction. The reaction for this change is
Here Coenzyme A (CoA) is not involved in electron transfer hence it is neithera reducing agent nor an oxidizing agent.
a.
b. ATP molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
c.
d. Coenzyme A (CoA–SH) molecule is neither a reducing agent nor an oxidizing agent in metabolic reactions.
Want to see more full solutions like this?
Chapter 12 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardSynthesis of 1-metilbenzotriazole from 1,2-diaminobenceno.arrow_forwardSynthesis of 1-metilbenzotriazole.arrow_forward
- Indicate the formula of the compound, that is the result of the N- alquilación (nucleofílic substitution), in which an additional lateral chain was formed (NH-CH2-COOMe). F3C. CF3 NH NH2 Br о OMe K2CO3, DABCO, DMFarrow_forwardIdentify the mechanism through which the following reaction will proceed and draw the major product. Part 1 of 2 Br KOH EtOH Through which mechanism will the reaction proceed? Select the single best answer. E1 E2 neither Part: 1/2 Part 2 of 2 Draw the major product formed as a result of the reaction. Click and drag to start drawing a structure. Xarrow_forwardWhat is single-point calibration? Provide an example.arrow_forward
- Draw the major product formed via an E1 pathway.arrow_forwardPart 9 of 9 Consider the products for the reaction. Identify the major and minor products. HO Cl The E stereoisomer is the major product and the Z stereoisomer is the minor product ▼ S major product minor productarrow_forwardConsider the reactants below. Answer the following questions about the reaction mechanism and products. HO Clarrow_forward
- julietteyep@gmail.com X YSCU Grades for Juliette L Turner: Orc X 199 A ALEKS - Juliette Turner - Modul X A ALEKS - Juliette Turner - Modul x G butane newman projection - Gox + www-awa.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IBxzaplnN4HsoQggFsejpgqKoyrQrB2dKVAN-BcZvcye0LYa6eXZ8d4vVr8Nc1GZqko5mtw-d1MkNcNzzwZsLf2Tu9_V817y?10Bw7QYjlb il Scribbr citation APA SCU email Student Portal | Main Ryker-Learning WCU-PHARM D MySCU YSCU Canvas- SCU Module 4: Homework (Ch 9-10) Question 28 of 30 (1 point) | Question Attempt: 1 of Unlimited H₂SO heat OH The mechanism of this reaction involves two carbocation intermediates, A and B. Part 1 of 2 KHSO 4 rearrangement A heat B H₂O 2 OH Draw the structure of A. Check Search #t m Save For Later Juliet Submit Assignm 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardThe electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




