ANAT.+PHYSIO.1-LAB.MAN. >CUSTOM<
20th Edition
ISBN: 9781264303106
Author: VanPutte
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.5, Problem 30AYP
What happens to cause depolarization and hyper-polarization? How do alterations in the K+ concentration gradient: changes in membrane permeability to K+, Na+, or Cl- and changes in
extracellular Ca2+ concentration affect depolarization and hyper-polarization?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What effect does an increase or a decrease in extracellularK+ concentration have on resting membrane potential?
What role do the Na+/K+ pumps play in establishing the resting membrane potential?
If: membrane potential=-70mV, ENa=+60mV, and Ex=-90mV, consider which directions Na+ and K+ will leak across the membrane. If both ions are crossing the membrane, what is the most important factor in determining whether membrane potential will become more positive or more negative?
Chapter 11 Solutions
ANAT.+PHYSIO.1-LAB.MAN. >CUSTOM<
Ch. 11.1 - List and give examples of the general functions of...Ch. 11.2 - Name the components of the CNS and the PNS.Ch. 11.2 - What are the following: sensory receptor, nerve,...Ch. 11.2 - Based on the direction they transmit action...Ch. 11.2 - Based on the structures they supply, what are the...Ch. 11.2 - Where are the cell bodies of sensory, somatic...Ch. 11.2 - What are the subcategories of the ANS?Ch. 11.2 - Compare the general functions of the CNS and the...Ch. 11.3 - Describe and give the function of a neuron cell...Ch. 11.3 - What is the function of the trigger zone?
Ch. 11.3 - Prob. 11AYPCh. 11.3 - Describe the three types of neurons based on...Ch. 11.3 - Prob. 13AYPCh. 11.3 - What characteristic makes glial cells different...Ch. 11.3 - Which glial cells are found in the CNS? In the...Ch. 11.3 - Which type of glial cell Supports neurons and...Ch. 11.3 - Name the different kinds of glial cells that ore...Ch. 11.3 - Prob. 18AYPCh. 11.3 - How do myelinated axons differ from unmyelinated...Ch. 11.4 - What makes up gray matter and white matter?Ch. 11.4 - Prob. 21AYPCh. 11.5 - Describe the concentration differences for Na+ and...Ch. 11.5 - Prob. 23AYPCh. 11.5 - Describe leak ion channels and go ted ion...Ch. 11.5 - Define ligand, receptor, and receptor site.Ch. 11.5 - What kinds of stimuli cause gated ion channels to...Ch. 11.5 - Prob. 27AYPCh. 11.5 - Prob. 28AYPCh. 11.5 - Prob. 29AYPCh. 11.5 - What happens to cause depolarization and...Ch. 11.5 - Prob. 31AYPCh. 11.5 - Prob. 32AYPCh. 11.5 - How does on action potential differ from a local...Ch. 11.5 - Prob. 34AYPCh. 11.5 - Prob. 35AYPCh. 11.5 - Prob. 36AYPCh. 11.5 - Prob. 37AYPCh. 11.5 - Prob. 38AYPCh. 11.5 - What is action potential frequency? What two...Ch. 11.5 - Describe sub-threshold threshold, maximal,...Ch. 11.5 - Prob. 41AYPCh. 11.5 - What prevents on action potential from reversing...Ch. 11.5 - Prob. 43AYPCh. 11.5 - Prob. 44AYPCh. 11.5 - Prob. 45AYPCh. 11.6 - What are the components of a synapse? What is the...Ch. 11.6 - What is on electrical synapse? Describe its...Ch. 11.6 - Describe the release of neurotransmitter In a...Ch. 11.6 - Prob. 49AYPCh. 11.6 - Prob. 50AYPCh. 11.6 - Prob. 51AYPCh. 11.6 - Explain the production of EPSPs and IPSPs. Why are...Ch. 11.6 - Prob. 53AYPCh. 11.6 - Prob. 54AYPCh. 11.6 - Prob. 55AYPCh. 11.6 - Prob. 56AYPCh. 11.7 - Diagram a convergent pathway, a divergent pathway,...Ch. 11 - The part of the nervous system that controls...Ch. 11 - Motor neurons and interneurons are _______...Ch. 11 - Cells found in the choroid plexuses that secrete...Ch. 11 - Glial cells that are phagocytic within the central...Ch. 11 - Action potentials are conducted more rapidly In...Ch. 11 - Clusters of neuron cell bodies within the...Ch. 11 - Prob. 7RACCh. 11 - Prob. 8RACCh. 11 - Compared with the inside of the resting plasma...Ch. 11 - Prob. 10RACCh. 11 - Prob. 11RACCh. 11 - If the permeability of the plasma membrane to K+...Ch. 11 - Decreasing the extracellular concentration of K+...Ch. 11 - Prob. 14RACCh. 11 - Which of these statements about ion movement...Ch. 11 - Prob. 16RACCh. 11 - Graded potentials a. spread over the plasma...Ch. 11 - During the depolarization phase of an action...Ch. 11 - Prob. 19RACCh. 11 - Prob. 20RACCh. 11 - Prob. 21RACCh. 11 - Neurotransmitter substances are stored in vesicles...Ch. 11 - In a chemical synapse, Action potentials in the...Ch. 11 - An inhibitory presynaptic neuron can affect a...Ch. 11 - Summation Is caused by combining two or more...Ch. 11 - In convergent pathways. a. the response of the...Ch. 11 - A child eats a whole bottle of salt (NaCl)...Ch. 11 - Prob. 2CTCh. 11 - Prob. 3CTCh. 11 - Prob. 4CTCh. 11 - The speed of action potential propagation and...Ch. 11 - Prob. 6CTCh. 11 - Strychnine blocks receptor sites for inhibitory...Ch. 11 - Prob. 8CTCh. 11 - Prob. 9CTCh. 11 - Prob. 10CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- What is electrical potential? Describe two reasons that the resting membrane potential is negative. What is the role of the Na+/K+ pump?arrow_forwardChoose the correct answer: A) When the voltage gated K+ channels open K+ moves down its concentration gradient from the ECF to inside the cell. O B) The value for resting membrane potential is closer to the EK+ (Equilibrium potential for K+) than the ENa+ O C) When the membrane potential is at rest the membrane is more permeable to Na+ than it is to K+ O D) Closing of the voltage-gated Na+ channels increases the permeability of the membrane to Na+arrow_forwardHow can the resting membrane potential of a membrane be calculated using the Goldman-Hodgkin-Katz (GHK) equation?arrow_forward
- Assume that in a neuron, the plasma membrane permeability values for potassium (K+), sodium (Na+), and Cl− are the following: PK = 1, PNa = 12, and PCl = 0.5. Based on physiological concentrations of K+, Na+, and Cl− (refer to the table), determine the membrane potential in this neuron.arrow_forwardHyperkalemia is a condition by which ECF potassium levels become too high (usually due to kidney failure). Consider the following questions about the consequence of hyperkalemia on membrane potential. How would hyperkalemia affect EK? Considering your answer to the previous question, how would hyperkalemia affect membrane potential?arrow_forwardWhat happens to the membrane potential when Na+/K+ pump is active?arrow_forward
- Why is the sodium-potassium pump indirectly important to the ac-tion potential and to maintaining the resting membrane potential?arrow_forwardIdentify the stages involved during the changes in membrane potential of the neuron represented in the graph above. Number: Answer Answer Answer Answer Stage: Hyperpolarization Repolarization Resting State Depolarizationarrow_forwardWhat condition is required for a specific ion to contribute to resting membrane potential?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
The Cell Membrane; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=AsffT7XIXbA;License: Standard youtube license