ANAT.+PHYSIO.1-LAB.MAN. >CUSTOM<
20th Edition
ISBN: 9781264303106
Author: VanPutte
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.7, Problem 57AYP
Diagram a convergent pathway, a divergent pathway, a reverberating circuit, and a parallel after-discharge circuit, and describe what is accomplished in each.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Define P wave
Define integration
14) at which voltage do Na+ voltage gated channels open?
a) 30mV
b) -70mV
c) 0mV
d) -55 mV
Chapter 11 Solutions
ANAT.+PHYSIO.1-LAB.MAN. >CUSTOM<
Ch. 11.1 - List and give examples of the general functions of...Ch. 11.2 - Name the components of the CNS and the PNS.Ch. 11.2 - What are the following: sensory receptor, nerve,...Ch. 11.2 - Based on the direction they transmit action...Ch. 11.2 - Based on the structures they supply, what are the...Ch. 11.2 - Where are the cell bodies of sensory, somatic...Ch. 11.2 - What are the subcategories of the ANS?Ch. 11.2 - Compare the general functions of the CNS and the...Ch. 11.3 - Describe and give the function of a neuron cell...Ch. 11.3 - What is the function of the trigger zone?
Ch. 11.3 - Prob. 11AYPCh. 11.3 - Describe the three types of neurons based on...Ch. 11.3 - Prob. 13AYPCh. 11.3 - What characteristic makes glial cells different...Ch. 11.3 - Which glial cells are found in the CNS? In the...Ch. 11.3 - Which type of glial cell Supports neurons and...Ch. 11.3 - Name the different kinds of glial cells that ore...Ch. 11.3 - Prob. 18AYPCh. 11.3 - How do myelinated axons differ from unmyelinated...Ch. 11.4 - What makes up gray matter and white matter?Ch. 11.4 - Prob. 21AYPCh. 11.5 - Describe the concentration differences for Na+ and...Ch. 11.5 - Prob. 23AYPCh. 11.5 - Describe leak ion channels and go ted ion...Ch. 11.5 - Define ligand, receptor, and receptor site.Ch. 11.5 - What kinds of stimuli cause gated ion channels to...Ch. 11.5 - Prob. 27AYPCh. 11.5 - Prob. 28AYPCh. 11.5 - Prob. 29AYPCh. 11.5 - What happens to cause depolarization and...Ch. 11.5 - Prob. 31AYPCh. 11.5 - Prob. 32AYPCh. 11.5 - How does on action potential differ from a local...Ch. 11.5 - Prob. 34AYPCh. 11.5 - Prob. 35AYPCh. 11.5 - Prob. 36AYPCh. 11.5 - Prob. 37AYPCh. 11.5 - Prob. 38AYPCh. 11.5 - What is action potential frequency? What two...Ch. 11.5 - Describe sub-threshold threshold, maximal,...Ch. 11.5 - Prob. 41AYPCh. 11.5 - What prevents on action potential from reversing...Ch. 11.5 - Prob. 43AYPCh. 11.5 - Prob. 44AYPCh. 11.5 - Prob. 45AYPCh. 11.6 - What are the components of a synapse? What is the...Ch. 11.6 - What is on electrical synapse? Describe its...Ch. 11.6 - Describe the release of neurotransmitter In a...Ch. 11.6 - Prob. 49AYPCh. 11.6 - Prob. 50AYPCh. 11.6 - Prob. 51AYPCh. 11.6 - Explain the production of EPSPs and IPSPs. Why are...Ch. 11.6 - Prob. 53AYPCh. 11.6 - Prob. 54AYPCh. 11.6 - Prob. 55AYPCh. 11.6 - Prob. 56AYPCh. 11.7 - Diagram a convergent pathway, a divergent pathway,...Ch. 11 - The part of the nervous system that controls...Ch. 11 - Motor neurons and interneurons are _______...Ch. 11 - Cells found in the choroid plexuses that secrete...Ch. 11 - Glial cells that are phagocytic within the central...Ch. 11 - Action potentials are conducted more rapidly In...Ch. 11 - Clusters of neuron cell bodies within the...Ch. 11 - Prob. 7RACCh. 11 - Prob. 8RACCh. 11 - Compared with the inside of the resting plasma...Ch. 11 - Prob. 10RACCh. 11 - Prob. 11RACCh. 11 - If the permeability of the plasma membrane to K+...Ch. 11 - Decreasing the extracellular concentration of K+...Ch. 11 - Prob. 14RACCh. 11 - Which of these statements about ion movement...Ch. 11 - Prob. 16RACCh. 11 - Graded potentials a. spread over the plasma...Ch. 11 - During the depolarization phase of an action...Ch. 11 - Prob. 19RACCh. 11 - Prob. 20RACCh. 11 - Prob. 21RACCh. 11 - Neurotransmitter substances are stored in vesicles...Ch. 11 - In a chemical synapse, Action potentials in the...Ch. 11 - An inhibitory presynaptic neuron can affect a...Ch. 11 - Summation Is caused by combining two or more...Ch. 11 - In convergent pathways. a. the response of the...Ch. 11 - A child eats a whole bottle of salt (NaCl)...Ch. 11 - Prob. 2CTCh. 11 - Prob. 3CTCh. 11 - Prob. 4CTCh. 11 - The speed of action potential propagation and...Ch. 11 - Prob. 6CTCh. 11 - Strychnine blocks receptor sites for inhibitory...Ch. 11 - Prob. 8CTCh. 11 - Prob. 9CTCh. 11 - Prob. 10CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Describe the action potential of an autorhythmic cell in the heart.a) Indicate how the opening and closing of each ion channel affects the membrane potential of the cell.b) Provide one similarity between the action potential of an autorhythmic cell and the action potential of a neuron.c) Provide one difference between the action potential of an autorhythmic cell and the action potential of a neuron.arrow_forwardExplain the difference between tonic and antagonistic control of homeostatic balance. Fig. 6.15 Give two examples of each.arrow_forwardThe following graph represents a membrane potential recording in the dark, then during a brief flash of flight at the time indicated by the arrow. This could be a recording from a: a) rod cell b) bipolar cell c) ganglion cell d) any of the abovearrow_forward
- which of the following would be true (more than one can be true)? a) summation of A and X would reach threshold b) summation of C and A would be a graded potential c) stimulation by A would depolarize cell d) stimulation by B would be a subthreshold depolarization e) summation of B and C would be a graded potential with the net value of 12 mV depolarizationarrow_forwardMatch each type of membrane potential (resting, threshold, graded, or action) to its definition: a) The membrane potential at which voltage gated sodium channels open. b) The membrane potential that triggers the action potential. c) Change in membrane potential that may or may not reach threshold and that may be depolarizing or hyperpolarizing. d) Rapid, strong depolarization followed by immediate repolarization. This potential is self-renewing if the right ion channels are nearby.arrow_forwardExplain what a potential space is, and give some examples.?arrow_forward
- 12) when K+ voltage-gated channels open, which of the following occurs? a) depolarization b) both depolarization and repolarization c) repolarization d) neither deolarization or repolarizationarrow_forward3) Neurons cannot respond during the absolute refractory period because: a) the concentration gradients for Na+ and K+ are reversed. b) the cell is below its normal resting membrane potential. c) voltage-gated Na+ channel activation gates are closed. d) voltage-gated Na+ channel inactivation gates are closed.arrow_forwardDuring the late phases (plateau) of the action potential of fast myocardium (e.g. ventricle) which is not true of the sodium channel? OA. Defects in inactivation can prolong the action potential and lead to long QT syndrome. OB. It is refractory. OC.A slower inactivation gate keeps the channel shut in response to sustained depolarization. OD. It fires transiently early on in the action potential and is not active during the late plateau. O E. All are true.arrow_forward
- The voltage produced by a single nerve or muscle cell is quite small, but there are many species of fish that use multiple action potentials in series to produce significant voltages. The electric organs in these fish are composed of specialized disk-shaped cells called electrocytes. The cell at rest has the usual potential difference between the inside and the outside, but the net potential difference across the cell is zero. An electrocyte is connected to nerve fibers that initially trigger a depolarization in one side of the cell but not the other. For the very short time of this depolarization, there is a net potential difference across the cell, as shown. Stacks of these cells connected in series can produce a large total voltage. Each stack can produce a small current; for more total current, more stacks are needed, connected in parallel. In an electric eel, each electrocyte can develop a voltage of 150 mV for a short time. For a total voltage of 450 V, how many electrocytes must…arrow_forwardPlease answer both 1) What is responsible for returning the cell to its normal resting membrane potential following the absolute refractory period? a) K+ leak channels b) the Na+/K+ pump c) activation of voltage-gated Na+ channels d) a ligand binding to a ligand-gated Na+ channel 2) What property of an action potential allows it to propagate? a) the rapid period of depolarization b) the rapid period of repolarization c) the brief period of hyperpolarization d) the fact that the peak is 85 mV above thresholdarrow_forwardMork is an alien from planet Ggle674. Mork finds a car and tries to figure out how it works. The alien places a sensor on a wire coming from the alternator when the car is started. Mork's sensor detects an electrical current of 12 volts coming from the alternator. Mork's experiment is most closely related to the method called 1) single cell recording. O 2) EEG O 3) ablation. O 4) functional magnetic resonance imaging. O 5) transcranial magnetic stimulation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
12 Organ Systems | Roles & functions | Easy science lesson; Author: Learn Easy Science;https://www.youtube.com/watch?v=cQIU0yJ8RBg;License: Standard youtube license